bevy_rapier3d/geometry/
collider_impl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
#[cfg(feature = "dim2")]
use na::DVector;
#[cfg(all(feature = "dim3", feature = "async-collider"))]
use {
    bevy::prelude::*,
    bevy::render::mesh::{Indices, VertexAttributeValues},
};

use rapier::prelude::{FeatureId, Point, Ray, SharedShape, Vector, DIM};

use super::{get_snapped_scale, shape_views::*};
#[cfg(all(feature = "dim3", feature = "async-collider"))]
use crate::geometry::ComputedColliderShape;
use crate::geometry::{Collider, PointProjection, RayIntersection, TriMeshFlags, VHACDParameters};
use crate::math::{Real, Rot, Vect};

impl Collider {
    /// The scaling factor that was applied to this collider.
    pub fn scale(&self) -> Vect {
        self.scale
    }

    /// This replaces the unscaled version of this collider by its scaled version,
    /// and resets `self.scale()` to `1.0`.
    pub fn promote_scaled_shape(&mut self) {
        self.unscaled = self.raw.clone();
        self.scale = Vect::ONE;
    }

    /// Initialize a new collider with a compound shape.
    pub fn compound(shapes: Vec<(Vect, Rot, Collider)>) -> Self {
        let shapes = shapes
            .into_iter()
            .map(|(t, r, s)| ((t, r).into(), s.raw))
            .collect();
        SharedShape::compound(shapes).into()
    }

    /// Initialize a new collider with a ball shape defined by its radius.
    pub fn ball(radius: Real) -> Self {
        SharedShape::ball(radius).into()
    }

    /// Initialize a new collider build with a half-space shape defined by the outward normal
    /// of its planar boundary.
    pub fn halfspace(outward_normal: Vect) -> Option<Self> {
        use rapier::na::Unit;
        let normal = Vector::from(outward_normal);
        Unit::try_new(normal, 1.0e-6).map(|n| SharedShape::halfspace(n).into())
    }

    /// Initialize a new collider with a cylindrical shape defined by its half-height
    /// (along the y axis) and its radius.
    #[cfg(feature = "dim3")]
    pub fn cylinder(half_height: Real, radius: Real) -> Self {
        SharedShape::cylinder(half_height, radius).into()
    }

    /// Initialize a new collider with a rounded cylindrical shape defined by its half-height
    /// (along the y axis), its radius, and its roundedness (the
    /// radius of the sphere used for dilating the cylinder).
    #[cfg(feature = "dim3")]
    pub fn round_cylinder(half_height: Real, radius: Real, border_radius: Real) -> Self {
        SharedShape::round_cylinder(half_height, radius, border_radius).into()
    }

    /// Initialize a new collider with a cone shape defined by its half-height
    /// (along the y axis) and its basis radius.
    #[cfg(feature = "dim3")]
    pub fn cone(half_height: Real, radius: Real) -> Self {
        SharedShape::cone(half_height, radius).into()
    }

    /// Initialize a new collider with a rounded cone shape defined by its half-height
    /// (along the y axis), its radius, and its roundedness (the
    /// radius of the sphere used for dilating the cylinder).
    #[cfg(feature = "dim3")]
    pub fn round_cone(half_height: Real, radius: Real, border_radius: Real) -> Self {
        SharedShape::round_cone(half_height, radius, border_radius).into()
    }

    /// Initialize a new collider with a cuboid shape defined by its half-extents.
    #[cfg(feature = "dim2")]
    pub fn cuboid(half_x: Real, half_y: Real) -> Self {
        SharedShape::cuboid(half_x, half_y).into()
    }

    /// Initialize a new collider with a round cuboid shape defined by its half-extents
    /// and border radius.
    #[cfg(feature = "dim2")]
    pub fn round_cuboid(half_x: Real, half_y: Real, border_radius: Real) -> Self {
        SharedShape::round_cuboid(half_x, half_y, border_radius).into()
    }

    /// Initialize a new collider with a capsule shape.
    pub fn capsule(start: Vect, end: Vect, radius: Real) -> Self {
        SharedShape::capsule(start.into(), end.into(), radius).into()
    }

    /// Initialize a new collider with a capsule shape aligned with the `x` axis.
    pub fn capsule_x(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::x() * half_height);
        SharedShape::capsule(-p, p, radius).into()
    }

    /// Initialize a new collider with a capsule shape aligned with the `y` axis.
    pub fn capsule_y(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::y() * half_height);
        SharedShape::capsule(-p, p, radius).into()
    }

    /// Initialize a new collider with a capsule shape aligned with the `z` axis.
    #[cfg(feature = "dim3")]
    pub fn capsule_z(half_height: Real, radius: Real) -> Self {
        let p = Point::from(Vector::z() * half_height);
        SharedShape::capsule(-p, p, radius).into()
    }

    /// Initialize a new collider with a cuboid shape defined by its half-extents.
    #[cfg(feature = "dim3")]
    pub fn cuboid(hx: Real, hy: Real, hz: Real) -> Self {
        SharedShape::cuboid(hx, hy, hz).into()
    }

    /// Initialize a new collider with a round cuboid shape defined by its half-extents
    /// and border radius.
    #[cfg(feature = "dim3")]
    pub fn round_cuboid(half_x: Real, half_y: Real, half_z: Real, border_radius: Real) -> Self {
        SharedShape::round_cuboid(half_x, half_y, half_z, border_radius).into()
    }

    /// Initializes a collider with a segment shape.
    pub fn segment(a: Vect, b: Vect) -> Self {
        SharedShape::segment(a.into(), b.into()).into()
    }

    /// Initializes a collider with a triangle shape.
    pub fn triangle(a: Vect, b: Vect, c: Vect) -> Self {
        SharedShape::triangle(a.into(), b.into(), c.into()).into()
    }

    /// Initializes a collider with a triangle shape with round corners.
    pub fn round_triangle(a: Vect, b: Vect, c: Vect, border_radius: Real) -> Self {
        SharedShape::round_triangle(a.into(), b.into(), c.into(), border_radius).into()
    }

    /// Initializes a collider with a polyline shape defined by its vertex and index buffers.
    pub fn polyline(vertices: Vec<Vect>, indices: Option<Vec<[u32; 2]>>) -> Self {
        let vertices = vertices.into_iter().map(|v| v.into()).collect();
        SharedShape::polyline(vertices, indices).into()
    }

    /// Initializes a collider with a triangle mesh shape defined by its vertex and index buffers.
    pub fn trimesh(
        vertices: Vec<Vect>,
        indices: Vec<[u32; 3]>,
    ) -> Result<Self, crate::rapier::prelude::TriMeshBuilderError> {
        let vertices = vertices.into_iter().map(|v| v.into()).collect();
        Ok(SharedShape::trimesh(vertices, indices)?.into())
    }

    /// Initializes a collider with a triangle mesh shape defined by its vertex and index buffers, and flags
    /// controlling its pre-processing.
    pub fn trimesh_with_flags(
        vertices: Vec<Vect>,
        indices: Vec<[u32; 3]>,
        flags: TriMeshFlags,
    ) -> Result<Self, crate::rapier::prelude::TriMeshBuilderError> {
        let vertices = vertices.into_iter().map(|v| v.into()).collect();
        Ok(SharedShape::trimesh_with_flags(vertices, indices, flags)?.into())
    }

    /// Initializes a collider with a Bevy Mesh.
    ///
    /// Returns `None` if the index buffer or vertex buffer of the mesh are in an incompatible format.
    #[cfg(all(feature = "dim3", feature = "async-collider"))]
    pub fn from_bevy_mesh(mesh: &Mesh, collider_shape: &ComputedColliderShape) -> Option<Self> {
        let (vtx, idx) = extract_mesh_vertices_indices(mesh)?;

        match collider_shape {
            ComputedColliderShape::TriMesh(flags) => Some(
                SharedShape::trimesh_with_flags(vtx, idx, *flags)
                    .ok()?
                    .into(),
            ),
            ComputedColliderShape::ConvexHull => {
                SharedShape::convex_hull(&vtx).map(|shape| shape.into())
            }
            ComputedColliderShape::ConvexDecomposition(params) => {
                Some(SharedShape::convex_decomposition_with_params(&vtx, &idx, params).into())
            }
        }
    }

    /// Initializes a collider with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition(vertices: &[Vect], indices: &[[u32; DIM]]) -> Self {
        let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
        SharedShape::convex_decomposition(&vertices, indices).into()
    }

    /// Initializes a collider with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition(
        vertices: &[Vect],
        indices: &[[u32; DIM]],
        border_radius: Real,
    ) -> Self {
        let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
        SharedShape::round_convex_decomposition(&vertices, indices, border_radius).into()
    }

    /// Initializes a collider with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
    pub fn convex_decomposition_with_params(
        vertices: &[Vect],
        indices: &[[u32; DIM]],
        params: &VHACDParameters,
    ) -> Self {
        let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
        SharedShape::convex_decomposition_with_params(&vertices, indices, params).into()
    }

    /// Initializes a collider with a compound shape obtained from the decomposition of
    /// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
    pub fn round_convex_decomposition_with_params(
        vertices: &[Vect],
        indices: &[[u32; DIM]],
        params: &VHACDParameters,
        border_radius: Real,
    ) -> Self {
        let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
        SharedShape::round_convex_decomposition_with_params(
            &vertices,
            indices,
            params,
            border_radius,
        )
        .into()
    }

    /// Initializes a new collider with a 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points.
    pub fn convex_hull(points: &[Vect]) -> Option<Self> {
        let points: Vec<_> = points.iter().map(|v| (*v).into()).collect();
        SharedShape::convex_hull(&points).map(Into::into)
    }

    /// Initializes a new collider with a round 2D convex polygon or 3D convex polyhedron
    /// obtained after computing the convex-hull of the given points. The shape is dilated
    /// by a sphere of radius `border_radius`.
    pub fn round_convex_hull(points: &[Vect], border_radius: Real) -> Option<Self> {
        let points: Vec<_> = points.iter().map(|v| (*v).into()).collect();
        SharedShape::round_convex_hull(&points, border_radius).map(Into::into)
    }

    /// Creates a new collider that is a convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed).
    #[cfg(feature = "dim2")]
    pub fn convex_polyline(points: Vec<Vect>) -> Option<Self> {
        let points = points.into_iter().map(|v| v.into()).collect();
        SharedShape::convex_polyline(points).map(Into::into)
    }

    /// Creates a new collider that is a round convex polygon formed by the
    /// given polyline assumed to be convex (no convex-hull will be automatically
    /// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
    #[cfg(feature = "dim2")]
    pub fn round_convex_polyline(points: Vec<Vect>, border_radius: Real) -> Option<Self> {
        let points = points.into_iter().map(|v| v.into()).collect();
        SharedShape::round_convex_polyline(points, border_radius).map(Into::into)
    }

    /// Creates a new collider that is a convex polyhedron formed by the
    /// given triangle-mesh assumed to be convex (no convex-hull will be automatically
    /// computed).
    #[cfg(feature = "dim3")]
    pub fn convex_mesh(points: Vec<Vect>, indices: &[[u32; 3]]) -> Option<Self> {
        let points = points.into_iter().map(|v| v.into()).collect();
        SharedShape::convex_mesh(points, indices).map(Into::into)
    }

    /// Creates a new collider that is a round convex polyhedron formed by the
    /// given triangle-mesh assumed to be convex (no convex-hull will be automatically
    /// computed). The triangle mesh shape is dilated by a sphere of radius `border_radius`.
    #[cfg(feature = "dim3")]
    pub fn round_convex_mesh(
        points: Vec<Vect>,
        indices: &[[u32; 3]],
        border_radius: Real,
    ) -> Option<Self> {
        let points = points.into_iter().map(|v| v.into()).collect();
        SharedShape::round_convex_mesh(points, indices, border_radius).map(Into::into)
    }

    /// Initializes a collider with a heightfield shape defined by its set of height and a scale
    /// factor along each coordinate axis.
    #[cfg(feature = "dim2")]
    pub fn heightfield(heights: Vec<Real>, scale: Vect) -> Self {
        SharedShape::heightfield(DVector::from_vec(heights), scale.into()).into()
    }

    /// Initializes a collider with a heightfield shape defined by its set of height (in
    /// column-major format) and a scale factor along each coordinate axis.
    #[cfg(feature = "dim3")]
    pub fn heightfield(heights: Vec<Real>, num_rows: usize, num_cols: usize, scale: Vect) -> Self {
        assert_eq!(
            heights.len(),
            num_rows * num_cols,
            "Invalid number of heights provided."
        );
        let heights = rapier::na::DMatrix::from_vec(num_rows, num_cols, heights);
        SharedShape::heightfield(heights, scale.into()).into()
    }

    /// Takes a strongly typed reference of this collider.
    pub fn as_typed_shape(&self) -> ColliderView {
        self.raw.as_typed_shape().into()
    }

    /// Takes a strongly typed reference of the unscaled version of this collider.
    pub fn as_unscaled_typed_shape(&self) -> ColliderView {
        self.unscaled.as_typed_shape().into()
    }

    /// Downcast this collider to a ball, if it is one.
    pub fn as_ball(&self) -> Option<BallView> {
        self.raw.as_ball().map(|s| BallView { raw: s })
    }

    /// Downcast this collider to a cuboid, if it is one.
    pub fn as_cuboid(&self) -> Option<CuboidView> {
        self.raw.as_cuboid().map(|s| CuboidView { raw: s })
    }

    /// Downcast this collider to a capsule, if it is one.
    pub fn as_capsule(&self) -> Option<CapsuleView> {
        self.raw.as_capsule().map(|s| CapsuleView { raw: s })
    }

    /// Downcast this collider to a segment, if it is one.
    pub fn as_segment(&self) -> Option<SegmentView> {
        self.raw.as_segment().map(|s| SegmentView { raw: s })
    }

    /// Downcast this collider to a triangle, if it is one.
    pub fn as_triangle(&self) -> Option<TriangleView> {
        self.raw.as_triangle().map(|s| TriangleView { raw: s })
    }

    /// Downcast this collider to a triangle mesh, if it is one.
    pub fn as_trimesh(&self) -> Option<TriMeshView> {
        self.raw.as_trimesh().map(|s| TriMeshView { raw: s })
    }

    /// Downcast this collider to a polyline, if it is one.
    pub fn as_polyline(&self) -> Option<PolylineView> {
        self.raw.as_polyline().map(|s| PolylineView { raw: s })
    }

    /// Downcast this collider to a half-space, if it is one.
    pub fn as_halfspace(&self) -> Option<HalfSpaceView> {
        self.raw.as_halfspace().map(|s| HalfSpaceView { raw: s })
    }

    /// Downcast this collider to a heightfield, if it is one.
    pub fn as_heightfield(&self) -> Option<HeightFieldView> {
        self.raw
            .as_heightfield()
            .map(|s| HeightFieldView { raw: s })
    }

    /// Downcast this collider to a compound shape, if it is one.
    pub fn as_compound(&self) -> Option<CompoundView> {
        self.raw.as_compound().map(|s| CompoundView { raw: s })
    }

    /// Downcast this collider to a convex polygon, if it is one.
    #[cfg(feature = "dim2")]
    pub fn as_convex_polygon(&self) -> Option<ConvexPolygonView> {
        self.raw
            .as_convex_polygon()
            .map(|s| ConvexPolygonView { raw: s })
    }

    /// Downcast this collider to a convex polyhedron, if it is one.
    #[cfg(feature = "dim3")]
    pub fn as_convex_polyhedron(&self) -> Option<ConvexPolyhedronView> {
        self.raw
            .as_convex_polyhedron()
            .map(|s| ConvexPolyhedronView { raw: s })
    }

    /// Downcast this collider to a cylinder, if it is one.
    #[cfg(feature = "dim3")]
    pub fn as_cylinder(&self) -> Option<CylinderView> {
        self.raw.as_cylinder().map(|s| CylinderView { raw: s })
    }

    /// Downcast this collider to a cone, if it is one.
    #[cfg(feature = "dim3")]
    pub fn as_cone(&self) -> Option<ConeView> {
        self.raw.as_cone().map(|s| ConeView { raw: s })
    }

    /// Downcast this collider to a mutable ball, if it is one.
    pub fn as_ball_mut(&mut self) -> Option<BallViewMut> {
        self.raw
            .make_mut()
            .as_ball_mut()
            .map(|s| BallViewMut { raw: s })
    }

    /// Downcast this collider to a mutable cuboid, if it is one.
    pub fn as_cuboid_mut(&mut self) -> Option<CuboidViewMut> {
        self.raw
            .make_mut()
            .as_cuboid_mut()
            .map(|s| CuboidViewMut { raw: s })
    }

    /// Downcast this collider to a mutable capsule, if it is one.
    pub fn as_capsule_mut(&mut self) -> Option<CapsuleViewMut> {
        self.raw
            .make_mut()
            .as_capsule_mut()
            .map(|s| CapsuleViewMut { raw: s })
    }

    /// Downcast this collider to a mutable segment, if it is one.
    pub fn as_segment_mut(&mut self) -> Option<SegmentViewMut> {
        self.raw
            .make_mut()
            .as_segment_mut()
            .map(|s| SegmentViewMut { raw: s })
    }

    /// Downcast this collider to a mutable triangle, if it is one.
    pub fn as_triangle_mut(&mut self) -> Option<TriangleViewMut> {
        self.raw
            .make_mut()
            .as_triangle_mut()
            .map(|s| TriangleViewMut { raw: s })
    }

    /// Downcast this collider to a mutable triangle mesh, if it is one.
    pub fn as_trimesh_mut(&mut self) -> Option<TriMeshViewMut> {
        self.raw
            .make_mut()
            .as_trimesh_mut()
            .map(|s| TriMeshViewMut { raw: s })
    }

    /// Downcast this collider to a mutable polyline, if it is one.
    pub fn as_polyline_mut(&mut self) -> Option<PolylineViewMut> {
        self.raw
            .make_mut()
            .as_polyline_mut()
            .map(|s| PolylineViewMut { raw: s })
    }

    /// Downcast this collider to a mutable half-space, if it is one.
    pub fn as_halfspace_mut(&mut self) -> Option<HalfSpaceViewMut> {
        self.raw
            .make_mut()
            .as_halfspace_mut()
            .map(|s| HalfSpaceViewMut { raw: s })
    }

    /// Downcast this collider to a mutable heightfield, if it is one.
    pub fn as_heightfield_mut(&mut self) -> Option<HeightFieldViewMut> {
        self.raw
            .make_mut()
            .as_heightfield_mut()
            .map(|s| HeightFieldViewMut { raw: s })
    }

    // /// Downcast this collider to a mutable compound shape, if it is one.
    // pub fn as_compound_mut(&mut self) -> Option<CompoundViewMut> {
    //     self.raw.make_mut()
    //         .as_compound_mut()
    //         .map(|s| CompoundViewMut { raw: s })
    // }

    // /// Downcast this collider to a mutable convex polygon, if it is one.
    // #[cfg(feature = "dim2")]
    // pub fn as_convex_polygon_mut(&mut self) -> Option<ConvexPolygonViewMut> {
    //     self.raw.make_mut()
    //         .as_convex_polygon_mut()
    //         .map(|s| ConvexPolygonViewMut { raw: s })
    // }

    // /// Downcast this collider to a mutable convex polyhedron, if it is one.
    // #[cfg(feature = "dim3")]
    // pub fn as_convex_polyhedron_mut(&mut self) -> Option<ConvexPolyhedronViewMut> {
    //     self.raw.make_mut()
    //         .as_convex_polyhedron_mut()
    //         .map(|s| ConvexPolyhedronViewMut { raw: s })
    // }

    /// Downcast this collider to a mutable cylinder, if it is one.
    #[cfg(feature = "dim3")]
    pub fn as_cylinder_mut(&mut self) -> Option<CylinderViewMut> {
        self.raw
            .make_mut()
            .as_cylinder_mut()
            .map(|s| CylinderViewMut { raw: s })
    }

    /// Downcast this collider to a mutable cone, if it is one.
    #[cfg(feature = "dim3")]
    pub fn as_cone_mut(&mut self) -> Option<ConeViewMut> {
        self.raw
            .make_mut()
            .as_cone_mut()
            .map(|s| ConeViewMut { raw: s })
    }

    /// Set the scaling factor of this shape.
    ///
    /// If the scaling factor is non-uniform, and the scaled shape can’t be
    /// represented as a supported smooth shape (for example scalling a Ball
    /// with a non-uniform scale results in an ellipse which isn’t supported),
    /// the shape is approximated by a convex polygon/convex polyhedron using
    /// `num_subdivisions` subdivisions.
    pub fn set_scale(&mut self, scale: Vect, num_subdivisions: u32) {
        let scale = get_snapped_scale(scale);

        if scale == self.scale {
            // Nothing to do.
            return;
        }

        if scale == Vect::ONE {
            // Trivial case.
            self.raw = self.unscaled.clone();
            self.scale = Vect::ONE;
            return;
        }

        if let Some(scaled) = self
            .as_unscaled_typed_shape()
            .raw_scale_by(scale, num_subdivisions)
        {
            self.raw = scaled;
            self.scale = scale;
        } else {
            log::error!("Failed to create the scaled convex hull geometry.");
        }
    }

    /// Projects a point on `self`, unless the projection lies further than the given max distance.
    ///
    /// The point is assumed to be expressed in the local-space of `self`.
    pub fn project_local_point_with_max_dist(
        &self,
        point: Vect,
        solid: bool,
        max_dist: Real,
    ) -> Option<PointProjection> {
        self.raw
            .project_local_point_with_max_dist(&point.into(), solid, max_dist)
            .map(Into::into)
    }

    /// Projects a point on `self` transformed by `m`, unless the projection lies further than the given max distance.
    pub fn project_point_with_max_dist(
        &self,
        translation: Vect,
        rotation: Rot,
        point: Vect,
        solid: bool,
        max_dist: Real,
    ) -> Option<PointProjection> {
        let pos = (translation, rotation).into();
        self.raw
            .project_point_with_max_dist(&pos, &point.into(), solid, max_dist)
            .map(Into::into)
    }

    /// Projects a point on `self`.
    ///
    /// The point is assumed to be expressed in the local-space of `self`.
    pub fn project_local_point(&self, point: Vect, solid: bool) -> PointProjection {
        self.raw.project_local_point(&point.into(), solid).into()
    }

    /// Projects a point on the boundary of `self` and returns the id of the
    /// feature the point was projected on.
    pub fn project_local_point_and_get_feature(&self, point: Vect) -> (PointProjection, FeatureId) {
        let (proj, feat) = self.raw.project_local_point_and_get_feature(&point.into());
        (proj.into(), feat)
    }

    /// Computes the minimal distance between a point and `self`.
    pub fn distance_to_local_point(&self, point: Vect, solid: bool) -> Real {
        self.raw.distance_to_local_point(&point.into(), solid)
    }

    /// Tests if the given point is inside of `self`.
    pub fn contains_local_point(&self, point: Vect) -> bool {
        self.raw.contains_local_point(&point.into())
    }

    /// Projects a point on `self` transformed by `m`.
    pub fn project_point(
        &self,
        translation: Vect,
        rotation: Rot,
        point: Vect,
        solid: bool,
    ) -> PointProjection {
        let pos = (translation, rotation).into();
        self.raw.project_point(&pos, &point.into(), solid).into()
    }

    /// Computes the minimal distance between a point and `self` transformed by `m`.
    #[inline]
    pub fn distance_to_point(
        &self,
        translation: Vect,
        rotation: Rot,
        point: Vect,
        solid: bool,
    ) -> Real {
        let pos = (translation, rotation).into();
        self.raw.distance_to_point(&pos, &point.into(), solid)
    }

    /// Projects a point on the boundary of `self` transformed by `m` and returns the id of the
    /// feature the point was projected on.
    pub fn project_point_and_get_feature(
        &self,
        translation: Vect,
        rotation: Rot,
        point: Vect,
    ) -> (PointProjection, FeatureId) {
        let pos = (translation, rotation).into();
        let (proj, feat) = self.raw.project_point_and_get_feature(&pos, &point.into());
        (proj.into(), feat)
    }

    /// Tests if the given point is inside of `self` transformed by `m`.
    pub fn contains_point(&self, translation: Vect, rotation: Rot, point: Vect) -> bool {
        let pos = (translation, rotation).into();
        self.raw.contains_point(&pos, &point.into())
    }

    /// Computes the time of impact between this transform shape and a ray.
    pub fn cast_local_ray(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
        solid: bool,
    ) -> Option<Real> {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw.cast_local_ray(&ray, max_time_of_impact, solid)
    }

    /// Computes the time of impact, and normal between this transformed shape and a ray.
    pub fn cast_local_ray_and_get_normal(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
        solid: bool,
    ) -> Option<RayIntersection> {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw
            .cast_local_ray_and_get_normal(&ray, max_time_of_impact, solid)
            .map(|inter| RayIntersection::from_rapier(inter, ray_origin, ray_dir))
    }

    /// Tests whether a ray intersects this transformed shape.
    pub fn intersects_local_ray(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
    ) -> bool {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw.intersects_local_ray(&ray, max_time_of_impact)
    }

    /// Computes the time of impact between this transform shape and a ray.
    pub fn cast_ray(
        &self,
        translation: Vect,
        rotation: Rot,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
        solid: bool,
    ) -> Option<Real> {
        let pos = (translation, rotation).into();
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw.cast_ray(&pos, &ray, max_time_of_impact, solid)
    }

    /// Computes the time of impact, and normal between this transformed shape and a ray.
    pub fn cast_ray_and_get_normal(
        &self,
        translation: Vect,
        rotation: Rot,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
        solid: bool,
    ) -> Option<RayIntersection> {
        let pos = (translation, rotation).into();
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw
            .cast_ray_and_get_normal(&pos, &ray, max_time_of_impact, solid)
            .map(|inter| RayIntersection::from_rapier(inter, ray_origin, ray_dir))
    }

    /// Tests whether a ray intersects this transformed shape.
    pub fn intersects_ray(
        &self,
        translation: Vect,
        rotation: Rot,
        ray_origin: Vect,
        ray_dir: Vect,
        max_time_of_impact: Real,
    ) -> bool {
        let pos = (translation, rotation).into();
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        self.raw.intersects_ray(&pos, &ray, max_time_of_impact)
    }
}

impl Default for Collider {
    fn default() -> Self {
        Self::ball(0.5)
    }
}

#[cfg(all(feature = "dim3", feature = "async-collider"))]
#[allow(clippy::type_complexity)]
fn extract_mesh_vertices_indices(mesh: &Mesh) -> Option<(Vec<na::Point3<Real>>, Vec<[u32; 3]>)> {
    use rapier::na::point;

    let vertices = mesh.attribute(Mesh::ATTRIBUTE_POSITION)?;
    let indices = mesh.indices()?;

    let vtx: Vec<_> = match vertices {
        VertexAttributeValues::Float32(vtx) => Some(
            vtx.chunks(3)
                .map(|v| point![v[0] as Real, v[1] as Real, v[2] as Real])
                .collect(),
        ),
        VertexAttributeValues::Float32x3(vtx) => Some(
            vtx.iter()
                .map(|v| point![v[0] as Real, v[1] as Real, v[2] as Real])
                .collect(),
        ),
        _ => None,
    }?;

    let idx = match indices {
        Indices::U16(idx) => idx
            .chunks_exact(3)
            .map(|i| [i[0] as u32, i[1] as u32, i[2] as u32])
            .collect(),
        Indices::U32(idx) => idx.chunks_exact(3).map(|i| [i[0], i[1], i[2]]).collect(),
    };

    Some((vtx, idx))
}