1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
use crate::{serde::Serializable, FromReflect, Reflect, TypeInfo, TypePath, Typed};
use bevy_ptr::{Ptr, PtrMut};
use bevy_utils::{HashMap, HashSet, TypeIdMap};
use downcast_rs::{impl_downcast, Downcast};
use serde::Deserialize;
use std::{
any::TypeId,
fmt::Debug,
sync::{Arc, PoisonError, RwLock, RwLockReadGuard, RwLockWriteGuard},
};
/// A registry of [reflected] types.
///
/// This struct is used as the central store for type information.
/// [Registering] a type will generate a new [`TypeRegistration`] entry in this store
/// using a type's [`GetTypeRegistration`] implementation
/// (which is automatically implemented when using [`#[derive(Reflect)]`](derive@crate::Reflect)).
///
/// See the [crate-level documentation] for more information.
///
/// [reflected]: crate
/// [Registering]: TypeRegistry::register
/// [crate-level documentation]: crate
pub struct TypeRegistry {
registrations: TypeIdMap<TypeRegistration>,
short_path_to_id: HashMap<&'static str, TypeId>,
type_path_to_id: HashMap<&'static str, TypeId>,
ambiguous_names: HashSet<&'static str>,
}
// TODO: remove this wrapper once we migrate to Atelier Assets and the Scene AssetLoader doesn't
// need a TypeRegistry ref
/// A synchronized wrapper around a [`TypeRegistry`].
#[derive(Clone, Default)]
pub struct TypeRegistryArc {
pub internal: Arc<RwLock<TypeRegistry>>,
}
impl Debug for TypeRegistryArc {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.internal
.read()
.unwrap_or_else(PoisonError::into_inner)
.type_path_to_id
.keys()
.fmt(f)
}
}
/// A trait which allows a type to generate its [`TypeRegistration`]
/// for registration into the [`TypeRegistry`].
///
/// This trait is automatically implemented for items using [`#[derive(Reflect)]`](derive@crate::Reflect).
/// The macro also allows [`TypeData`] to be more easily registered.
///
/// See the [crate-level documentation] for more information on type registration.
///
/// [crate-level documentation]: crate
#[diagnostic::on_unimplemented(
message = "`{Self}` does not provide type registration information",
note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
)]
pub trait GetTypeRegistration: 'static {
/// Returns the default [`TypeRegistration`] for this type.
fn get_type_registration() -> TypeRegistration;
/// Registers other types needed by this type.
///
/// This method is called by [`TypeRegistry::register`] to register any other required types.
/// Often, this is done for fields of structs and enum variants to ensure all types are properly registered.
#[allow(unused_variables)]
fn register_type_dependencies(registry: &mut TypeRegistry) {}
}
impl Default for TypeRegistry {
fn default() -> Self {
Self::new()
}
}
impl TypeRegistry {
/// Create a type registry with *no* registered types.
pub fn empty() -> Self {
Self {
registrations: Default::default(),
short_path_to_id: Default::default(),
type_path_to_id: Default::default(),
ambiguous_names: Default::default(),
}
}
/// Create a type registry with default registrations for primitive types.
pub fn new() -> Self {
let mut registry = Self::empty();
registry.register::<bool>();
registry.register::<char>();
registry.register::<u8>();
registry.register::<u16>();
registry.register::<u32>();
registry.register::<u64>();
registry.register::<u128>();
registry.register::<usize>();
registry.register::<i8>();
registry.register::<i16>();
registry.register::<i32>();
registry.register::<i64>();
registry.register::<i128>();
registry.register::<isize>();
registry.register::<f32>();
registry.register::<f64>();
registry.register::<String>();
registry
}
/// Attempts to register the type `T` if it has not yet been registered already.
///
/// This will also recursively register any type dependencies as specified by [`GetTypeRegistration::register_type_dependencies`].
/// When deriving `Reflect`, this will generally be all the fields of the struct or enum variant.
/// As with any type registration, these type dependencies will not be registered more than once.
///
/// If the registration for type `T` already exists, it will not be registered again and neither will its type dependencies.
/// To register the type, overwriting any existing registration, use [register](Self::overwrite_registration) instead.
///
/// Additionally, this will add any reflect [type data](TypeData) as specified in the [`Reflect`] derive.
///
/// # Example
///
/// ```
/// # use std::any::TypeId;
/// # use bevy_reflect::{Reflect, TypeRegistry, std_traits::ReflectDefault};
/// #[derive(Reflect, Default)]
/// #[reflect(Default)]
/// struct Foo {
/// name: Option<String>,
/// value: i32
/// }
///
/// let mut type_registry = TypeRegistry::default();
///
/// type_registry.register::<Foo>();
///
/// // The main type
/// assert!(type_registry.contains(TypeId::of::<Foo>()));
///
/// // Its type dependencies
/// assert!(type_registry.contains(TypeId::of::<Option<String>>()));
/// assert!(type_registry.contains(TypeId::of::<i32>()));
///
/// // Its type data
/// assert!(type_registry.get_type_data::<ReflectDefault>(TypeId::of::<Foo>()).is_some());
/// ```
pub fn register<T>(&mut self)
where
T: GetTypeRegistration,
{
if self.register_internal(TypeId::of::<T>(), T::get_type_registration) {
T::register_type_dependencies(self);
}
}
/// Attempts to register the type described by `registration`.
///
/// If the registration for the type already exists, it will not be registered again.
///
/// To forcibly register the type, overwriting any existing registration, use the
/// [`overwrite_registration`](Self::overwrite_registration) method instead.
///
/// This method will _not_ register type dependencies.
/// Use [`register`](Self::register) to register a type with its dependencies.
///
/// Returns `true` if the registration was added and `false` if it already exists.
pub fn add_registration(&mut self, registration: TypeRegistration) -> bool {
let type_id = registration.type_id();
self.register_internal(type_id, || registration)
}
/// Registers the type described by `registration`.
///
/// If the registration for the type already exists, it will be overwritten.
///
/// To avoid overwriting existing registrations, it's recommended to use the
/// [`register`](Self::register) or [`add_registration`](Self::add_registration) methods instead.
///
/// This method will _not_ register type dependencies.
/// Use [`register`](Self::register) to register a type with its dependencies.
pub fn overwrite_registration(&mut self, registration: TypeRegistration) {
Self::update_registration_indices(
®istration,
&mut self.short_path_to_id,
&mut self.type_path_to_id,
&mut self.ambiguous_names,
);
self.registrations
.insert(registration.type_id(), registration);
}
/// Internal method to register a type with a given [`TypeId`] and [`TypeRegistration`].
///
/// By using this method, we are able to reduce the number of `TypeId` hashes and lookups needed
/// to register a type.
///
/// This method is internal to prevent users from accidentally registering a type with a `TypeId`
/// that does not match the type in the `TypeRegistration`.
fn register_internal(
&mut self,
type_id: TypeId,
get_registration: impl FnOnce() -> TypeRegistration,
) -> bool {
match self.registrations.entry(type_id) {
bevy_utils::Entry::Occupied(_) => false,
bevy_utils::Entry::Vacant(entry) => {
let registration = get_registration();
Self::update_registration_indices(
®istration,
&mut self.short_path_to_id,
&mut self.type_path_to_id,
&mut self.ambiguous_names,
);
entry.insert(registration);
true
}
}
}
/// Internal method to register additional lookups for a given [`TypeRegistration`].
fn update_registration_indices(
registration: &TypeRegistration,
short_path_to_id: &mut HashMap<&'static str, TypeId>,
type_path_to_id: &mut HashMap<&'static str, TypeId>,
ambiguous_names: &mut HashSet<&'static str>,
) {
let short_name = registration.type_info().type_path_table().short_path();
if short_path_to_id.contains_key(short_name) || ambiguous_names.contains(short_name) {
// name is ambiguous. fall back to long names for all ambiguous types
short_path_to_id.remove(short_name);
ambiguous_names.insert(short_name);
} else {
short_path_to_id.insert(short_name, registration.type_id());
}
type_path_to_id.insert(registration.type_info().type_path(), registration.type_id());
}
/// Registers the type data `D` for type `T`.
///
/// Most of the time [`TypeRegistry::register`] can be used instead to register a type you derived [`Reflect`] for.
/// However, in cases where you want to add a piece of type data that was not included in the list of `#[reflect(...)]` type data in the derive,
/// or where the type is generic and cannot register e.g. [`ReflectSerialize`] unconditionally without knowing the specific type parameters,
/// this method can be used to insert additional type data.
///
/// # Example
/// ```
/// use bevy_reflect::{TypeRegistry, ReflectSerialize, ReflectDeserialize};
///
/// let mut type_registry = TypeRegistry::default();
/// type_registry.register::<Option<String>>();
/// type_registry.register_type_data::<Option<String>, ReflectSerialize>();
/// type_registry.register_type_data::<Option<String>, ReflectDeserialize>();
/// ```
pub fn register_type_data<T: Reflect + TypePath, D: TypeData + FromType<T>>(&mut self) {
let data = self.get_mut(TypeId::of::<T>()).unwrap_or_else(|| {
panic!(
"attempted to call `TypeRegistry::register_type_data` for type `{T}` with data `{D}` without registering `{T}` first",
T = T::type_path(),
D = std::any::type_name::<D>(),
)
});
data.insert(D::from_type());
}
pub fn contains(&self, type_id: TypeId) -> bool {
self.registrations.contains_key(&type_id)
}
/// Returns a reference to the [`TypeRegistration`] of the type with the
/// given [`TypeId`].
///
/// If the specified type has not been registered, returns `None`.
///
pub fn get(&self, type_id: TypeId) -> Option<&TypeRegistration> {
self.registrations.get(&type_id)
}
/// Returns a mutable reference to the [`TypeRegistration`] of the type with
/// the given [`TypeId`].
///
/// If the specified type has not been registered, returns `None`.
///
pub fn get_mut(&mut self, type_id: TypeId) -> Option<&mut TypeRegistration> {
self.registrations.get_mut(&type_id)
}
/// Returns a reference to the [`TypeRegistration`] of the type with the
/// given [type path].
///
/// If no type with the given path has been registered, returns `None`.
///
/// [type path]: TypePath::type_path
pub fn get_with_type_path(&self, type_path: &str) -> Option<&TypeRegistration> {
self.type_path_to_id
.get(type_path)
.and_then(|id| self.get(*id))
}
/// Returns a mutable reference to the [`TypeRegistration`] of the type with
/// the given [type path].
///
/// If no type with the given type path has been registered, returns `None`.
///
/// [type path]: TypePath::type_path
pub fn get_with_type_path_mut(&mut self, type_path: &str) -> Option<&mut TypeRegistration> {
self.type_path_to_id
.get(type_path)
.cloned()
.and_then(move |id| self.get_mut(id))
}
/// Returns a reference to the [`TypeRegistration`] of the type with
/// the given [short type path].
///
/// If the short type path is ambiguous, or if no type with the given path
/// has been registered, returns `None`.
///
/// [short type path]: TypePath::short_type_path
pub fn get_with_short_type_path(&self, short_type_path: &str) -> Option<&TypeRegistration> {
self.short_path_to_id
.get(short_type_path)
.and_then(|id| self.registrations.get(id))
}
/// Returns a mutable reference to the [`TypeRegistration`] of the type with
/// the given [short type path].
///
/// If the short type path is ambiguous, or if no type with the given path
/// has been registered, returns `None`.
///
/// [short type path]: TypePath::short_type_path
pub fn get_with_short_type_path_mut(
&mut self,
short_type_path: &str,
) -> Option<&mut TypeRegistration> {
self.short_path_to_id
.get(short_type_path)
.and_then(|id| self.registrations.get_mut(id))
}
/// Returns `true` if the given [short type path] is ambiguous, that is, it matches multiple registered types.
///
/// # Example
/// ```
/// # use bevy_reflect::TypeRegistry;
/// # mod foo {
/// # use bevy_reflect::Reflect;
/// # #[derive(Reflect)]
/// # pub struct MyType;
/// # }
/// # mod bar {
/// # use bevy_reflect::Reflect;
/// # #[derive(Reflect)]
/// # pub struct MyType;
/// # }
/// let mut type_registry = TypeRegistry::default();
/// type_registry.register::<foo::MyType>();
/// type_registry.register::<bar::MyType>();
/// assert_eq!(type_registry.is_ambiguous("MyType"), true);
/// ```
///
/// [short type path]: TypePath::short_type_path
pub fn is_ambiguous(&self, short_type_path: &str) -> bool {
self.ambiguous_names.contains(short_type_path)
}
/// Returns a reference to the [`TypeData`] of type `T` associated with the given [`TypeId`].
///
/// The returned value may be used to downcast [`Reflect`] trait objects to
/// trait objects of the trait used to generate `T`, provided that the
/// underlying reflected type has the proper `#[reflect(DoThing)]`
/// attribute.
///
/// If the specified type has not been registered, or if `T` is not present
/// in its type registration, returns `None`.
pub fn get_type_data<T: TypeData>(&self, type_id: TypeId) -> Option<&T> {
self.get(type_id)
.and_then(|registration| registration.data::<T>())
}
/// Returns a mutable reference to the [`TypeData`] of type `T` associated with the given [`TypeId`].
///
/// If the specified type has not been registered, or if `T` is not present
/// in its type registration, returns `None`.
pub fn get_type_data_mut<T: TypeData>(&mut self, type_id: TypeId) -> Option<&mut T> {
self.get_mut(type_id)
.and_then(|registration| registration.data_mut::<T>())
}
/// Returns the [`TypeInfo`] associated with the given [`TypeId`].
///
/// If the specified type has not been registered, returns `None`.
pub fn get_type_info(&self, type_id: TypeId) -> Option<&'static TypeInfo> {
self.get(type_id)
.map(|registration| registration.type_info())
}
/// Returns an iterator over the [`TypeRegistration`]s of the registered
/// types.
pub fn iter(&self) -> impl Iterator<Item = &TypeRegistration> {
self.registrations.values()
}
/// Returns a mutable iterator over the [`TypeRegistration`]s of the registered
/// types.
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut TypeRegistration> {
self.registrations.values_mut()
}
/// Checks to see if the [`TypeData`] of type `T` is associated with each registered type,
/// returning a ([`TypeRegistration`], [`TypeData`]) iterator for all entries where data of that type was found.
pub fn iter_with_data<T: TypeData>(&self) -> impl Iterator<Item = (&TypeRegistration, &T)> {
self.registrations.values().filter_map(|item| {
let type_data = item.data::<T>();
type_data.map(|data| (item, data))
})
}
}
impl TypeRegistryArc {
/// Takes a read lock on the underlying [`TypeRegistry`].
pub fn read(&self) -> RwLockReadGuard<'_, TypeRegistry> {
self.internal.read().unwrap_or_else(PoisonError::into_inner)
}
/// Takes a write lock on the underlying [`TypeRegistry`].
pub fn write(&self) -> RwLockWriteGuard<'_, TypeRegistry> {
self.internal
.write()
.unwrap_or_else(PoisonError::into_inner)
}
}
/// Runtime storage for type metadata, registered into the [`TypeRegistry`].
///
/// An instance of `TypeRegistration` can be created using the [`TypeRegistration::of`] method,
/// but is more often automatically generated using [`#[derive(Reflect)]`](derive@crate::Reflect) which itself generates
/// an implementation of the [`GetTypeRegistration`] trait.
///
/// Along with the type's [`TypeInfo`],
/// this struct also contains a type's registered [`TypeData`].
///
/// See the [crate-level documentation] for more information on type registration.
///
/// # Example
///
/// ```
/// # use bevy_reflect::{TypeRegistration, std_traits::ReflectDefault, FromType};
/// let mut registration = TypeRegistration::of::<Option<String>>();
///
/// assert_eq!("core::option::Option<alloc::string::String>", registration.type_info().type_path());
/// assert_eq!("Option<String>", registration.type_info().type_path_table().short_path());
///
/// registration.insert::<ReflectDefault>(FromType::<Option<String>>::from_type());
/// assert!(registration.data::<ReflectDefault>().is_some())
/// ```
///
/// [crate-level documentation]: crate
pub struct TypeRegistration {
data: TypeIdMap<Box<dyn TypeData>>,
type_info: &'static TypeInfo,
}
impl Debug for TypeRegistration {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("TypeRegistration")
.field("type_info", &self.type_info)
.finish()
}
}
impl TypeRegistration {
/// Returns the [`TypeId`] of the type.
///
#[inline]
pub fn type_id(&self) -> TypeId {
self.type_info.type_id()
}
/// Returns a reference to the value of type `T` in this registration's type
/// data.
///
/// Returns `None` if no such value exists.
pub fn data<T: TypeData>(&self) -> Option<&T> {
self.data
.get(&TypeId::of::<T>())
.and_then(|value| value.downcast_ref())
}
/// Returns a mutable reference to the value of type `T` in this
/// registration's type data.
///
/// Returns `None` if no such value exists.
pub fn data_mut<T: TypeData>(&mut self) -> Option<&mut T> {
self.data
.get_mut(&TypeId::of::<T>())
.and_then(|value| value.downcast_mut())
}
/// Returns a reference to the registration's [`TypeInfo`]
pub fn type_info(&self) -> &'static TypeInfo {
self.type_info
}
/// Inserts an instance of `T` into this registration's type data.
///
/// If another instance of `T` was previously inserted, it is replaced.
pub fn insert<T: TypeData>(&mut self, data: T) {
self.data.insert(TypeId::of::<T>(), Box::new(data));
}
/// Creates type registration information for `T`.
pub fn of<T: Reflect + Typed + TypePath>() -> Self {
Self {
data: Default::default(),
type_info: T::type_info(),
}
}
}
impl Clone for TypeRegistration {
fn clone(&self) -> Self {
let mut data = TypeIdMap::default();
for (id, type_data) in &self.data {
data.insert(*id, (*type_data).clone_type_data());
}
TypeRegistration {
data,
type_info: self.type_info,
}
}
}
/// A trait used to type-erase type metadata.
///
/// Type data can be registered to the [`TypeRegistry`] and stored on a type's [`TypeRegistration`].
///
/// While type data is often generated using the [`#[reflect_trait]`](crate::reflect_trait) macro,
/// almost any type that implements [`Clone`] can be considered "type data".
/// This is because it has a blanket implementation over all `T` where `T: Clone + Send + Sync + 'static`.
///
/// See the [crate-level documentation] for more information on type data and type registration.
///
/// [crate-level documentation]: crate
pub trait TypeData: Downcast + Send + Sync {
fn clone_type_data(&self) -> Box<dyn TypeData>;
}
impl_downcast!(TypeData);
impl<T: 'static + Send + Sync> TypeData for T
where
T: Clone,
{
fn clone_type_data(&self) -> Box<dyn TypeData> {
Box::new(self.clone())
}
}
/// Trait used to generate [`TypeData`] for trait reflection.
///
/// This is used by the `#[derive(Reflect)]` macro to generate an implementation
/// of [`TypeData`] to pass to [`TypeRegistration::insert`].
pub trait FromType<T> {
fn from_type() -> Self;
}
/// A struct used to serialize reflected instances of a type.
///
/// A `ReflectSerialize` for type `T` can be obtained via
/// [`FromType::from_type`].
#[derive(Clone)]
pub struct ReflectSerialize {
get_serializable: for<'a> fn(value: &'a dyn Reflect) -> Serializable,
}
impl<T: TypePath + FromReflect + erased_serde::Serialize> FromType<T> for ReflectSerialize {
fn from_type() -> Self {
ReflectSerialize {
get_serializable: |value| {
value
.downcast_ref::<T>()
.map(|value| Serializable::Borrowed(value))
.or_else(|| T::from_reflect(value).map(|value| Serializable::Owned(Box::new(value))))
.unwrap_or_else(|| {
panic!(
"FromReflect::from_reflect failed when called on type `{}` with this value: {value:?}",
T::type_path(),
);
})
},
}
}
}
impl ReflectSerialize {
/// Turn the value into a serializable representation
pub fn get_serializable<'a>(&self, value: &'a dyn Reflect) -> Serializable<'a> {
(self.get_serializable)(value)
}
}
/// A struct used to deserialize reflected instances of a type.
///
/// A `ReflectDeserialize` for type `T` can be obtained via
/// [`FromType::from_type`].
#[derive(Clone)]
pub struct ReflectDeserialize {
pub func: fn(
deserializer: &mut dyn erased_serde::Deserializer,
) -> Result<Box<dyn Reflect>, erased_serde::Error>,
}
impl ReflectDeserialize {
/// Deserializes a reflected value.
///
/// The underlying type of the reflected value, and thus the expected
/// structure of the serialized data, is determined by the type used to
/// construct this `ReflectDeserialize` value.
pub fn deserialize<'de, D>(&self, deserializer: D) -> Result<Box<dyn Reflect>, D::Error>
where
D: serde::Deserializer<'de>,
{
let mut erased = <dyn erased_serde::Deserializer>::erase(deserializer);
(self.func)(&mut erased)
.map_err(<<D as serde::Deserializer<'de>>::Error as serde::de::Error>::custom)
}
}
impl<T: for<'a> Deserialize<'a> + Reflect> FromType<T> for ReflectDeserialize {
fn from_type() -> Self {
ReflectDeserialize {
func: |deserializer| Ok(Box::new(T::deserialize(deserializer)?)),
}
}
}
/// [`Reflect`] values are commonly used in situations where the actual types of values
/// are not known at runtime. In such situations you might have access to a `*const ()` pointer
/// that you know implements [`Reflect`], but have no way of turning it into a `&dyn Reflect`.
///
/// This is where [`ReflectFromPtr`] comes in, when creating a [`ReflectFromPtr`] for a given type `T: Reflect`.
/// Internally, this saves a concrete function `*const T -> const dyn Reflect` which lets you create a trait object of [`Reflect`]
/// from a pointer.
///
/// # Example
/// ```
/// use bevy_reflect::{TypeRegistry, Reflect, ReflectFromPtr};
/// use bevy_ptr::Ptr;
/// use std::ptr::NonNull;
///
/// #[derive(Reflect)]
/// struct Reflected(String);
///
/// let mut type_registry = TypeRegistry::default();
/// type_registry.register::<Reflected>();
///
/// let mut value = Reflected("Hello world!".to_string());
/// let value = Ptr::from(&value);
///
/// let reflect_data = type_registry.get(std::any::TypeId::of::<Reflected>()).unwrap();
/// let reflect_from_ptr = reflect_data.data::<ReflectFromPtr>().unwrap();
/// // SAFE: `value` is of type `Reflected`, which the `ReflectFromPtr` was created for
/// let value = unsafe { reflect_from_ptr.as_reflect(value) };
///
/// assert_eq!(value.downcast_ref::<Reflected>().unwrap().0, "Hello world!");
/// ```
#[derive(Clone)]
pub struct ReflectFromPtr {
type_id: TypeId,
from_ptr: unsafe fn(Ptr) -> &dyn Reflect,
from_ptr_mut: unsafe fn(PtrMut) -> &mut dyn Reflect,
}
#[allow(unsafe_code)]
impl ReflectFromPtr {
/// Returns the [`TypeId`] that the [`ReflectFromPtr`] was constructed for.
pub fn type_id(&self) -> TypeId {
self.type_id
}
/// Convert `Ptr` into `&dyn Reflect`.
///
/// # Safety
///
/// `val` must be a pointer to value of the type that the [`ReflectFromPtr`] was constructed for.
/// This can be verified by checking that the type id returned by [`ReflectFromPtr::type_id`] is the expected one.
pub unsafe fn as_reflect<'a>(&self, val: Ptr<'a>) -> &'a dyn Reflect {
// SAFETY: contract uphold by the caller.
unsafe { (self.from_ptr)(val) }
}
/// Convert `PtrMut` into `&mut dyn Reflect`.
///
/// # Safety
///
/// `val` must be a pointer to a value of the type that the [`ReflectFromPtr`] was constructed for
/// This can be verified by checking that the type id returned by [`ReflectFromPtr::type_id`] is the expected one.
pub unsafe fn as_reflect_mut<'a>(&self, val: PtrMut<'a>) -> &'a mut dyn Reflect {
// SAFETY: contract uphold by the caller.
unsafe { (self.from_ptr_mut)(val) }
}
/// Get a function pointer to turn a `Ptr` into `&dyn Reflect` for
/// the type this [`ReflectFromPtr`] was constructed for.
///
/// # Safety
///
/// When calling the unsafe function returned by this method you must ensure that:
/// - The input `Ptr` points to the `Reflect` type this `ReflectFromPtr`
/// was constructed for.
pub fn from_ptr(&self) -> unsafe fn(Ptr) -> &dyn Reflect {
self.from_ptr
}
/// Get a function pointer to turn a `PtrMut` into `&mut dyn Reflect` for
/// the type this [`ReflectFromPtr`] was constructed for.
///
/// # Safety
///
/// When calling the unsafe function returned by this method you must ensure that:
/// - The input `PtrMut` points to the `Reflect` type this `ReflectFromPtr`
/// was constructed for.
pub fn from_ptr_mut(&self) -> unsafe fn(PtrMut) -> &mut dyn Reflect {
self.from_ptr_mut
}
}
#[allow(unsafe_code)]
impl<T: Reflect> FromType<T> for ReflectFromPtr {
fn from_type() -> Self {
ReflectFromPtr {
type_id: TypeId::of::<T>(),
from_ptr: |ptr| {
// SAFETY: `from_ptr_mut` is either called in `ReflectFromPtr::as_reflect`
// or returned by `ReflectFromPtr::from_ptr`, both lay out the invariants
// required by `deref`
unsafe { ptr.deref::<T>() as &dyn Reflect }
},
from_ptr_mut: |ptr| {
// SAFETY: same as above, but for `as_reflect_mut`, `from_ptr_mut` and `deref_mut`.
unsafe { ptr.deref_mut::<T>() as &mut dyn Reflect }
},
}
}
}
#[cfg(test)]
#[allow(unsafe_code)]
mod test {
use crate::{GetTypeRegistration, ReflectFromPtr};
use bevy_ptr::{Ptr, PtrMut};
use crate as bevy_reflect;
use crate::Reflect;
#[test]
fn test_reflect_from_ptr() {
#[derive(Reflect)]
struct Foo {
a: f32,
}
let foo_registration = <Foo as GetTypeRegistration>::get_type_registration();
let reflect_from_ptr = foo_registration.data::<ReflectFromPtr>().unwrap();
// not required in this situation because we no nobody messed with the TypeRegistry,
// but in the general case somebody could have replaced the ReflectFromPtr with an
// instance for another type, so then we'd need to check that the type is the expected one
assert_eq!(reflect_from_ptr.type_id(), std::any::TypeId::of::<Foo>());
let mut value = Foo { a: 1.0 };
{
let value = PtrMut::from(&mut value);
// SAFETY: reflect_from_ptr was constructed for the correct type
let dyn_reflect = unsafe { reflect_from_ptr.as_reflect_mut(value) };
match dyn_reflect.reflect_mut() {
bevy_reflect::ReflectMut::Struct(strukt) => {
strukt.field_mut("a").unwrap().apply(&2.0f32);
}
_ => panic!("invalid reflection"),
}
}
{
// SAFETY: reflect_from_ptr was constructed for the correct type
let dyn_reflect = unsafe { reflect_from_ptr.as_reflect(Ptr::from(&value)) };
match dyn_reflect.reflect_ref() {
bevy_reflect::ReflectRef::Struct(strukt) => {
let a = strukt.field("a").unwrap().downcast_ref::<f32>().unwrap();
assert_eq!(*a, 2.0);
}
_ => panic!("invalid reflection"),
}
}
}
}