1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! Helpers for working with Bevy reflection.

use crate::TypeInfo;
use bevy_utils::{FixedState, NoOpHash, TypeIdMap};
use std::{
    any::{Any, TypeId},
    hash::BuildHasher,
    sync::{OnceLock, PoisonError, RwLock},
};

/// A type that can be stored in a ([`Non`])[`GenericTypeCell`].
///
/// [`Non`]: NonGenericTypeCell
pub trait TypedProperty: sealed::Sealed {
    type Stored: 'static;
}

/// Used to store a [`String`] in a [`GenericTypePathCell`] as part of a [`TypePath`] implementation.
///
/// [`TypePath`]: crate::TypePath
pub struct TypePathComponent;

mod sealed {
    use super::{TypeInfo, TypePathComponent, TypedProperty};

    pub trait Sealed {}

    impl Sealed for TypeInfo {}
    impl Sealed for TypePathComponent {}

    impl TypedProperty for TypeInfo {
        type Stored = Self;
    }

    impl TypedProperty for TypePathComponent {
        type Stored = String;
    }
}

/// A container for [`TypeInfo`] over non-generic types, allowing instances to be stored statically.
///
/// This is specifically meant for use with _non_-generic types. If your type _is_ generic,
/// then use [`GenericTypeCell`] instead. Otherwise, it will not take into account all
/// monomorphizations of your type.
///
/// Non-generic [`TypePath`]s should be trivially generated with string literals and [`concat!`].
///
/// ## Example
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, NamedField, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, Typed, TypeInfo, TypePath, ApplyError};
/// use bevy_reflect::utility::NonGenericTypeInfoCell;
///
/// struct Foo {
///     bar: i32
/// }
///
/// impl Typed for Foo {
///     fn type_info() -> &'static TypeInfo {
///         static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
///         CELL.get_or_set(|| {
///             let fields = [NamedField::new::<i32>("bar")];
///             let info = StructInfo::new::<Self>(&fields);
///             TypeInfo::Struct(info)
///         })
///     }
/// }
/// # impl TypePath for Foo {
/// #     fn type_path() -> &'static str { todo!() }
/// #     fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl Reflect for Foo {
/// #     fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// #     fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// #     fn as_any(&self) -> &dyn Any { todo!() }
/// #     fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// #     fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// #     fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// #     fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// #     fn try_apply(&mut self, value: &dyn Reflect) -> Result<(), ApplyError> { todo!() }
/// #     fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// #     fn reflect_ref(&self) -> ReflectRef { todo!() }
/// #     fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// #     fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// #     fn clone_value(&self) -> Box<dyn Reflect> { todo!() }
/// # }
/// ```
///
/// [`TypePath`]: crate::TypePath
pub struct NonGenericTypeCell<T: TypedProperty>(OnceLock<T::Stored>);

/// See [`NonGenericTypeCell`].
pub type NonGenericTypeInfoCell = NonGenericTypeCell<TypeInfo>;

impl<T: TypedProperty> NonGenericTypeCell<T> {
    /// Initialize a [`NonGenericTypeCell`] for non-generic types.
    pub const fn new() -> Self {
        Self(OnceLock::new())
    }

    /// Returns a reference to the [`TypedProperty`] stored in the cell.
    ///
    /// If there is no entry found, a new one will be generated from the given function.
    pub fn get_or_set<F>(&self, f: F) -> &T::Stored
    where
        F: FnOnce() -> T::Stored,
    {
        self.0.get_or_init(f)
    }
}

impl<T: TypedProperty> Default for NonGenericTypeCell<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// A container for [`TypedProperty`] over generic types, allowing instances to be stored statically.
///
/// This is specifically meant for use with generic types. If your type isn't generic,
/// then use [`NonGenericTypeCell`] instead as it should be much more performant.
///
/// `#[derive(TypePath)]` and [`impl_type_path`] should always be used over [`GenericTypePathCell`]
/// where possible.
///
/// ## Examples
///
/// Implementing [`TypeInfo`] with generics.
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, Reflect, ReflectMut, ReflectOwned, ReflectRef, TupleStructInfo, Typed, TypeInfo, TypePath, UnnamedField, ApplyError};
/// use bevy_reflect::utility::GenericTypeInfoCell;
///
/// struct Foo<T>(T);
///
/// impl<T: Reflect + TypePath> Typed for Foo<T> {
///     fn type_info() -> &'static TypeInfo {
///         static CELL: GenericTypeInfoCell = GenericTypeInfoCell::new();
///         CELL.get_or_insert::<Self, _>(|| {
///             let fields = [UnnamedField::new::<T>(0)];
///             let info = TupleStructInfo::new::<Self>(&fields);
///             TypeInfo::TupleStruct(info)
///         })
///     }
/// }
/// # impl<T: TypePath> TypePath for Foo<T> {
/// #     fn type_path() -> &'static str { todo!() }
/// #     fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl<T: Reflect + TypePath> Reflect for Foo<T> {
/// #     fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// #     fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// #     fn as_any(&self) -> &dyn Any { todo!() }
/// #     fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// #     fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// #     fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// #     fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// #     fn try_apply(&mut self, value: &dyn Reflect) -> Result<(), ApplyError> { todo!() }
/// #     fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// #     fn reflect_ref(&self) -> ReflectRef { todo!() }
/// #     fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// #     fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// #     fn clone_value(&self) -> Box<dyn Reflect> { todo!() }
/// # }
/// ```
///
///  Implementing [`TypePath`] with generics.
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::TypePath;
/// use bevy_reflect::utility::GenericTypePathCell;
///
/// struct Foo<T>(T);
///
/// impl<T: TypePath> TypePath for Foo<T> {
///     fn type_path() -> &'static str {
///         static CELL: GenericTypePathCell = GenericTypePathCell::new();
///         CELL.get_or_insert::<Self, _>(|| format!("my_crate::foo::Foo<{}>", T::type_path()))
///     }
///     
///     fn short_type_path() -> &'static str {
///         static CELL: GenericTypePathCell = GenericTypePathCell::new();
///         CELL.get_or_insert::<Self, _>(|| format!("Foo<{}>", T::short_type_path()))
///     }
///
///     fn type_ident() -> Option<&'static str> {
///         Some("Foo")
///     }
///
///     fn module_path() -> Option<&'static str> {
///         Some("my_crate::foo")
///     }
///
///     fn crate_name() -> Option<&'static str> {
///         Some("my_crate")
///     }
/// }
/// ```
/// [`impl_type_path`]: crate::impl_type_path
/// [`TypePath`]: crate::TypePath
pub struct GenericTypeCell<T: TypedProperty>(RwLock<TypeIdMap<&'static T::Stored>>);

/// See [`GenericTypeCell`].
pub type GenericTypeInfoCell = GenericTypeCell<TypeInfo>;
/// See [`GenericTypeCell`].
pub type GenericTypePathCell = GenericTypeCell<TypePathComponent>;

impl<T: TypedProperty> GenericTypeCell<T> {
    /// Initialize a [`GenericTypeCell`] for generic types.
    pub const fn new() -> Self {
        Self(RwLock::new(TypeIdMap::with_hasher(NoOpHash)))
    }

    /// Returns a reference to the [`TypedProperty`] stored in the cell.
    ///
    /// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
    /// If there is no entry found, a new one will be generated from the given function.
    pub fn get_or_insert<G, F>(&self, f: F) -> &T::Stored
    where
        G: Any + ?Sized,
        F: FnOnce() -> T::Stored,
    {
        let type_id = TypeId::of::<G>();

        // Put in a separate scope, so `mapping` is dropped before `f`,
        // since `f` might want to call `get_or_insert` recursively
        // and we don't want a deadlock!
        {
            let mapping = self.0.read().unwrap_or_else(PoisonError::into_inner);
            if let Some(info) = mapping.get(&type_id) {
                return info;
            }
        }

        let value = f();

        let mut mapping = self.0.write().unwrap_or_else(PoisonError::into_inner);
        mapping
            .entry(type_id)
            .insert({
                // We leak here in order to obtain a `&'static` reference.
                // Otherwise, we won't be able to return a reference due to the `RwLock`.
                // This should be okay, though, since we expect it to remain statically
                // available over the course of the application.
                Box::leak(Box::new(value))
            })
            .get()
    }
}

impl<T: TypedProperty> Default for GenericTypeCell<T> {
    fn default() -> Self {
        Self::new()
    }
}

/// Deterministic fixed state hasher to be used by implementors of [`Reflect::reflect_hash`].
///
/// Hashes should be deterministic across processes so hashes can be used as
/// checksums for saved scenes, rollback snapshots etc. This function returns
/// such a hasher.
///
/// [`Reflect::reflect_hash`]: crate::Reflect
#[inline]
pub fn reflect_hasher() -> bevy_utils::AHasher {
    FixedState.build_hasher()
}