bevy_render/batching/gpu_preprocessing.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
//! Batching functionality when GPU preprocessing is in use.
use core::{any::TypeId, marker::PhantomData, mem};
use bevy_app::{App, Plugin};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::Entity,
query::{Has, With},
resource::Resource,
schedule::IntoScheduleConfigs as _,
system::{Query, Res, ResMut, StaticSystemParam},
world::{FromWorld, World},
};
use bevy_encase_derive::ShaderType;
use bevy_math::UVec4;
use bevy_platform::collections::{hash_map::Entry, HashMap, HashSet};
use bevy_utils::{default, TypeIdMap};
use bytemuck::{Pod, Zeroable};
use encase::{internal::WriteInto, ShaderSize};
use indexmap::IndexMap;
use nonmax::NonMaxU32;
use tracing::{error, info};
use wgpu::{BindingResource, BufferUsages, DownlevelFlags, Features};
use crate::{
experimental::occlusion_culling::OcclusionCulling,
render_phase::{
BinnedPhaseItem, BinnedRenderPhaseBatch, BinnedRenderPhaseBatchSet,
BinnedRenderPhaseBatchSets, CachedRenderPipelinePhaseItem, PhaseItem,
PhaseItemBatchSetKey as _, PhaseItemExtraIndex, RenderBin, SortedPhaseItem,
SortedRenderPhase, UnbatchableBinnedEntityIndices, ViewBinnedRenderPhases,
ViewSortedRenderPhases,
},
render_resource::{Buffer, GpuArrayBufferable, RawBufferVec, UninitBufferVec},
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::MainEntity,
view::{ExtractedView, NoIndirectDrawing, RetainedViewEntity},
Render, RenderApp, RenderDebugFlags, RenderSet,
};
use super::{BatchMeta, GetBatchData, GetFullBatchData};
#[derive(Default)]
pub struct BatchingPlugin {
/// Debugging flags that can optionally be set when constructing the renderer.
pub debug_flags: RenderDebugFlags,
}
impl Plugin for BatchingPlugin {
fn build(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.insert_resource(IndirectParametersBuffers::new(
self.debug_flags
.contains(RenderDebugFlags::ALLOW_COPIES_FROM_INDIRECT_PARAMETERS),
))
.add_systems(
Render,
write_indirect_parameters_buffers.in_set(RenderSet::PrepareResourcesFlush),
)
.add_systems(
Render,
clear_indirect_parameters_buffers.in_set(RenderSet::ManageViews),
);
}
fn finish(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app.init_resource::<GpuPreprocessingSupport>();
}
}
/// Records whether GPU preprocessing and/or GPU culling are supported on the
/// device.
///
/// No GPU preprocessing is supported on WebGL because of the lack of compute
/// shader support. GPU preprocessing is supported on DirectX 12, but due to [a
/// `wgpu` limitation] GPU culling is not.
///
/// [a `wgpu` limitation]: https://github.com/gfx-rs/wgpu/issues/2471
#[derive(Clone, Copy, PartialEq, Resource)]
pub struct GpuPreprocessingSupport {
/// The maximum amount of GPU preprocessing available on this platform.
pub max_supported_mode: GpuPreprocessingMode,
}
impl GpuPreprocessingSupport {
/// Returns true if this GPU preprocessing support level isn't `None`.
#[inline]
pub fn is_available(&self) -> bool {
self.max_supported_mode != GpuPreprocessingMode::None
}
/// Returns the given GPU preprocessing mode, capped to the current
/// preprocessing mode.
pub fn min(&self, mode: GpuPreprocessingMode) -> GpuPreprocessingMode {
match (self.max_supported_mode, mode) {
(GpuPreprocessingMode::None, _) | (_, GpuPreprocessingMode::None) => {
GpuPreprocessingMode::None
}
(mode, GpuPreprocessingMode::Culling) | (GpuPreprocessingMode::Culling, mode) => mode,
(GpuPreprocessingMode::PreprocessingOnly, GpuPreprocessingMode::PreprocessingOnly) => {
GpuPreprocessingMode::PreprocessingOnly
}
}
}
/// Returns true if GPU culling is supported on this platform.
pub fn is_culling_supported(&self) -> bool {
self.max_supported_mode == GpuPreprocessingMode::Culling
}
}
/// The amount of GPU preprocessing (compute and indirect draw) that we do.
#[derive(Clone, Copy, PartialEq)]
pub enum GpuPreprocessingMode {
/// No GPU preprocessing is in use at all.
///
/// This is used when GPU compute isn't available.
None,
/// GPU preprocessing is in use, but GPU culling isn't.
///
/// This is used when the [`NoIndirectDrawing`] component is present on the
/// camera.
PreprocessingOnly,
/// Both GPU preprocessing and GPU culling are in use.
///
/// This is used by default.
Culling,
}
/// The GPU buffers holding the data needed to render batches.
///
/// For example, in the 3D PBR pipeline this holds `MeshUniform`s, which are the
/// `BD` type parameter in that mode.
///
/// We have a separate *buffer data input* type (`BDI`) here, which a compute
/// shader is expected to expand to the full buffer data (`BD`) type. GPU
/// uniform building is generally faster and uses less system RAM to VRAM bus
/// bandwidth, but only implemented for some pipelines (for example, not in the
/// 2D pipeline at present) and only when compute shader is available.
#[derive(Resource)]
pub struct BatchedInstanceBuffers<BD, BDI>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
BDI: Pod + Default,
{
/// The uniform data inputs for the current frame.
///
/// These are uploaded during the extraction phase.
pub current_input_buffer: InstanceInputUniformBuffer<BDI>,
/// The uniform data inputs for the previous frame.
///
/// The indices don't generally line up between `current_input_buffer`
/// and `previous_input_buffer`, because, among other reasons, entities
/// can spawn or despawn between frames. Instead, each current buffer
/// data input uniform is expected to contain the index of the
/// corresponding buffer data input uniform in this list.
pub previous_input_buffer: InstanceInputUniformBuffer<BDI>,
/// The data needed to render buffers for each phase.
///
/// The keys of this map are the type IDs of each phase: e.g. `Opaque3d`,
/// `AlphaMask3d`, etc.
pub phase_instance_buffers: TypeIdMap<UntypedPhaseBatchedInstanceBuffers<BD>>,
}
impl<BD, BDI> Default for BatchedInstanceBuffers<BD, BDI>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
BDI: Pod + Sync + Send + Default + 'static,
{
fn default() -> Self {
BatchedInstanceBuffers {
current_input_buffer: InstanceInputUniformBuffer::new(),
previous_input_buffer: InstanceInputUniformBuffer::new(),
phase_instance_buffers: HashMap::default(),
}
}
}
/// The GPU buffers holding the data needed to render batches for a single
/// phase.
///
/// These are split out per phase so that we can run the phases in parallel.
/// This is the version of the structure that has a type parameter, which
/// enables Bevy's scheduler to run the batching operations for the different
/// phases in parallel.
///
/// See the documentation for [`BatchedInstanceBuffers`] for more information.
#[derive(Resource)]
pub struct PhaseBatchedInstanceBuffers<PI, BD>
where
PI: PhaseItem,
BD: GpuArrayBufferable + Sync + Send + 'static,
{
/// The buffers for this phase.
pub buffers: UntypedPhaseBatchedInstanceBuffers<BD>,
phantom: PhantomData<PI>,
}
impl<PI, BD> Default for PhaseBatchedInstanceBuffers<PI, BD>
where
PI: PhaseItem,
BD: GpuArrayBufferable + Sync + Send + 'static,
{
fn default() -> Self {
PhaseBatchedInstanceBuffers {
buffers: UntypedPhaseBatchedInstanceBuffers::default(),
phantom: PhantomData,
}
}
}
/// The GPU buffers holding the data needed to render batches for a single
/// phase, without a type parameter for that phase.
///
/// Since this structure doesn't have a type parameter, it can be placed in
/// [`BatchedInstanceBuffers::phase_instance_buffers`].
pub struct UntypedPhaseBatchedInstanceBuffers<BD>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
{
/// A storage area for the buffer data that the GPU compute shader is
/// expected to write to.
///
/// There will be one entry for each index.
pub data_buffer: UninitBufferVec<BD>,
/// The index of the buffer data in the current input buffer that
/// corresponds to each instance.
///
/// This is keyed off each view. Each view has a separate buffer.
pub work_item_buffers: HashMap<RetainedViewEntity, PreprocessWorkItemBuffers>,
/// A buffer that holds the number of indexed meshes that weren't visible in
/// the previous frame, when GPU occlusion culling is in use.
///
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
/// view. Bevy uses this value to determine how many threads to dispatch to
/// check meshes that weren't visible next frame to see if they became newly
/// visible this frame.
pub late_indexed_indirect_parameters_buffer:
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
/// A buffer that holds the number of non-indexed meshes that weren't
/// visible in the previous frame, when GPU occlusion culling is in use.
///
/// There's one set of [`LatePreprocessWorkItemIndirectParameters`] per
/// view. Bevy uses this value to determine how many threads to dispatch to
/// check meshes that weren't visible next frame to see if they became newly
/// visible this frame.
pub late_non_indexed_indirect_parameters_buffer:
RawBufferVec<LatePreprocessWorkItemIndirectParameters>,
}
/// Holds the GPU buffer of instance input data, which is the data about each
/// mesh instance that the CPU provides.
///
/// `BDI` is the *buffer data input* type, which the GPU mesh preprocessing
/// shader is expected to expand to the full *buffer data* type.
pub struct InstanceInputUniformBuffer<BDI>
where
BDI: Pod + Default,
{
/// The buffer containing the data that will be uploaded to the GPU.
buffer: RawBufferVec<BDI>,
/// Indices of slots that are free within the buffer.
///
/// When adding data, we preferentially overwrite these slots first before
/// growing the buffer itself.
free_uniform_indices: Vec<u32>,
}
impl<BDI> InstanceInputUniformBuffer<BDI>
where
BDI: Pod + Default,
{
/// Creates a new, empty buffer.
pub fn new() -> InstanceInputUniformBuffer<BDI> {
InstanceInputUniformBuffer {
buffer: RawBufferVec::new(BufferUsages::STORAGE),
free_uniform_indices: vec![],
}
}
/// Clears the buffer and entity list out.
pub fn clear(&mut self) {
self.buffer.clear();
self.free_uniform_indices.clear();
}
/// Returns the [`RawBufferVec`] corresponding to this input uniform buffer.
#[inline]
pub fn buffer(&self) -> &RawBufferVec<BDI> {
&self.buffer
}
/// Adds a new piece of buffered data to the uniform buffer and returns its
/// index.
pub fn add(&mut self, element: BDI) -> u32 {
match self.free_uniform_indices.pop() {
Some(uniform_index) => {
self.buffer.values_mut()[uniform_index as usize] = element;
uniform_index
}
None => self.buffer.push(element) as u32,
}
}
/// Removes a piece of buffered data from the uniform buffer.
///
/// This simply marks the data as free.
pub fn remove(&mut self, uniform_index: u32) {
self.free_uniform_indices.push(uniform_index);
}
/// Returns the piece of buffered data at the given index.
///
/// Returns [`None`] if the index is out of bounds or the data is removed.
pub fn get(&self, uniform_index: u32) -> Option<BDI> {
if (uniform_index as usize) >= self.buffer.len()
|| self.free_uniform_indices.contains(&uniform_index)
{
None
} else {
Some(self.get_unchecked(uniform_index))
}
}
/// Returns the piece of buffered data at the given index.
/// Can return data that has previously been removed.
///
/// # Panics
/// if `uniform_index` is not in bounds of [`Self::buffer`].
pub fn get_unchecked(&self, uniform_index: u32) -> BDI {
self.buffer.values()[uniform_index as usize]
}
/// Stores a piece of buffered data at the given index.
///
/// # Panics
/// if `uniform_index` is not in bounds of [`Self::buffer`].
pub fn set(&mut self, uniform_index: u32, element: BDI) {
self.buffer.values_mut()[uniform_index as usize] = element;
}
// Ensures that the buffers are nonempty, which the GPU requires before an
// upload can take place.
pub fn ensure_nonempty(&mut self) {
if self.buffer.is_empty() {
self.buffer.push(default());
}
}
/// Returns the number of instances in this buffer.
pub fn len(&self) -> usize {
self.buffer.len()
}
/// Returns true if this buffer has no instances or false if it contains any
/// instances.
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
/// Consumes this [`InstanceInputUniformBuffer`] and returns the raw buffer
/// ready to be uploaded to the GPU.
pub fn into_buffer(self) -> RawBufferVec<BDI> {
self.buffer
}
}
impl<BDI> Default for InstanceInputUniformBuffer<BDI>
where
BDI: Pod + Default,
{
fn default() -> Self {
Self::new()
}
}
/// The buffer of GPU preprocessing work items for a single view.
pub enum PreprocessWorkItemBuffers {
/// The work items we use if we aren't using indirect drawing.
///
/// Because we don't have to separate indexed from non-indexed meshes in
/// direct mode, we only have a single buffer here.
Direct(RawBufferVec<PreprocessWorkItem>),
/// The buffer of work items we use if we are using indirect drawing.
///
/// We need to separate out indexed meshes from non-indexed meshes in this
/// case because the indirect parameters for these two types of meshes have
/// different sizes.
Indirect {
/// The buffer of work items corresponding to indexed meshes.
indexed: RawBufferVec<PreprocessWorkItem>,
/// The buffer of work items corresponding to non-indexed meshes.
non_indexed: RawBufferVec<PreprocessWorkItem>,
/// The work item buffers we use when GPU occlusion culling is in use.
gpu_occlusion_culling: Option<GpuOcclusionCullingWorkItemBuffers>,
},
}
/// The work item buffers we use when GPU occlusion culling is in use.
pub struct GpuOcclusionCullingWorkItemBuffers {
/// The buffer of work items corresponding to indexed meshes.
pub late_indexed: UninitBufferVec<PreprocessWorkItem>,
/// The buffer of work items corresponding to non-indexed meshes.
pub late_non_indexed: UninitBufferVec<PreprocessWorkItem>,
/// The offset into the
/// [`UntypedPhaseBatchedInstanceBuffers::late_indexed_indirect_parameters_buffer`]
/// where this view's indirect dispatch counts for indexed meshes live.
pub late_indirect_parameters_indexed_offset: u32,
/// The offset into the
/// [`UntypedPhaseBatchedInstanceBuffers::late_non_indexed_indirect_parameters_buffer`]
/// where this view's indirect dispatch counts for non-indexed meshes live.
pub late_indirect_parameters_non_indexed_offset: u32,
}
/// A GPU-side data structure that stores the number of workgroups to dispatch
/// for the second phase of GPU occlusion culling.
///
/// The late mesh preprocessing phase checks meshes that weren't visible frame
/// to determine if they're potentially visible this frame.
#[derive(Clone, Copy, ShaderType, Pod, Zeroable)]
#[repr(C)]
pub struct LatePreprocessWorkItemIndirectParameters {
/// The number of workgroups to dispatch.
///
/// This will be equal to `work_item_count / 64`, rounded *up*.
dispatch_x: u32,
/// The number of workgroups along the abstract Y axis to dispatch: always
/// 1.
dispatch_y: u32,
/// The number of workgroups along the abstract Z axis to dispatch: always
/// 1.
dispatch_z: u32,
/// The actual number of work items.
///
/// The GPU indirect dispatch doesn't read this, but it's used internally to
/// determine the actual number of work items that exist in the late
/// preprocessing work item buffer.
work_item_count: u32,
/// Padding to 64-byte boundaries for some hardware.
pad: UVec4,
}
impl Default for LatePreprocessWorkItemIndirectParameters {
fn default() -> LatePreprocessWorkItemIndirectParameters {
LatePreprocessWorkItemIndirectParameters {
dispatch_x: 0,
dispatch_y: 1,
dispatch_z: 1,
work_item_count: 0,
pad: default(),
}
}
}
/// Returns the set of work item buffers for the given view, first creating it
/// if necessary.
///
/// Bevy uses work item buffers to tell the mesh preprocessing compute shader
/// which meshes are to be drawn.
///
/// You may need to call this function if you're implementing your own custom
/// render phases. See the `specialized_mesh_pipeline` example.
pub fn get_or_create_work_item_buffer<'a, I>(
work_item_buffers: &'a mut HashMap<RetainedViewEntity, PreprocessWorkItemBuffers>,
view: RetainedViewEntity,
no_indirect_drawing: bool,
enable_gpu_occlusion_culling: bool,
) -> &'a mut PreprocessWorkItemBuffers
where
I: 'static,
{
let preprocess_work_item_buffers = match work_item_buffers.entry(view) {
Entry::Occupied(occupied_entry) => occupied_entry.into_mut(),
Entry::Vacant(vacant_entry) => {
if no_indirect_drawing {
vacant_entry.insert(PreprocessWorkItemBuffers::Direct(RawBufferVec::new(
BufferUsages::STORAGE,
)))
} else {
vacant_entry.insert(PreprocessWorkItemBuffers::Indirect {
indexed: RawBufferVec::new(BufferUsages::STORAGE),
non_indexed: RawBufferVec::new(BufferUsages::STORAGE),
// We fill this in below if `enable_gpu_occlusion_culling`
// is set.
gpu_occlusion_culling: None,
})
}
}
};
// Initialize the GPU occlusion culling buffers if necessary.
if let PreprocessWorkItemBuffers::Indirect {
ref mut gpu_occlusion_culling,
..
} = *preprocess_work_item_buffers
{
match (
enable_gpu_occlusion_culling,
gpu_occlusion_culling.is_some(),
) {
(false, false) | (true, true) => {}
(false, true) => {
*gpu_occlusion_culling = None;
}
(true, false) => {
*gpu_occlusion_culling = Some(GpuOcclusionCullingWorkItemBuffers {
late_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
late_non_indexed: UninitBufferVec::new(BufferUsages::STORAGE),
late_indirect_parameters_indexed_offset: 0,
late_indirect_parameters_non_indexed_offset: 0,
});
}
}
}
preprocess_work_item_buffers
}
/// Initializes work item buffers for a phase in preparation for a new frame.
pub fn init_work_item_buffers(
work_item_buffers: &mut PreprocessWorkItemBuffers,
late_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
LatePreprocessWorkItemIndirectParameters,
>,
late_non_indexed_indirect_parameters_buffer: &'_ mut RawBufferVec<
LatePreprocessWorkItemIndirectParameters,
>,
) {
// Add the offsets for indirect parameters that the late phase of mesh
// preprocessing writes to.
if let PreprocessWorkItemBuffers::Indirect {
gpu_occlusion_culling:
Some(GpuOcclusionCullingWorkItemBuffers {
ref mut late_indirect_parameters_indexed_offset,
ref mut late_indirect_parameters_non_indexed_offset,
..
}),
..
} = *work_item_buffers
{
*late_indirect_parameters_indexed_offset = late_indexed_indirect_parameters_buffer
.push(LatePreprocessWorkItemIndirectParameters::default())
as u32;
*late_indirect_parameters_non_indexed_offset = late_non_indexed_indirect_parameters_buffer
.push(LatePreprocessWorkItemIndirectParameters::default())
as u32;
}
}
impl PreprocessWorkItemBuffers {
/// Adds a new work item to the appropriate buffer.
///
/// `indexed` specifies whether the work item corresponds to an indexed
/// mesh.
pub fn push(&mut self, indexed: bool, preprocess_work_item: PreprocessWorkItem) {
match *self {
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
buffer.push(preprocess_work_item);
}
PreprocessWorkItemBuffers::Indirect {
indexed: ref mut indexed_buffer,
non_indexed: ref mut non_indexed_buffer,
ref mut gpu_occlusion_culling,
} => {
if indexed {
indexed_buffer.push(preprocess_work_item);
} else {
non_indexed_buffer.push(preprocess_work_item);
}
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
if indexed {
gpu_occlusion_culling.late_indexed.add();
} else {
gpu_occlusion_culling.late_non_indexed.add();
}
}
}
}
}
/// Clears out the GPU work item buffers in preparation for a new frame.
pub fn clear(&mut self) {
match *self {
PreprocessWorkItemBuffers::Direct(ref mut buffer) => {
buffer.clear();
}
PreprocessWorkItemBuffers::Indirect {
indexed: ref mut indexed_buffer,
non_indexed: ref mut non_indexed_buffer,
ref mut gpu_occlusion_culling,
} => {
indexed_buffer.clear();
non_indexed_buffer.clear();
if let Some(ref mut gpu_occlusion_culling) = *gpu_occlusion_culling {
gpu_occlusion_culling.late_indexed.clear();
gpu_occlusion_culling.late_non_indexed.clear();
gpu_occlusion_culling.late_indirect_parameters_indexed_offset = 0;
gpu_occlusion_culling.late_indirect_parameters_non_indexed_offset = 0;
}
}
}
}
}
/// One invocation of the preprocessing shader: i.e. one mesh instance in a
/// view.
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct PreprocessWorkItem {
/// The index of the batch input data in the input buffer that the shader
/// reads from.
pub input_index: u32,
/// In direct mode, the index of the mesh uniform; in indirect mode, the
/// index of the [`IndirectParametersGpuMetadata`].
///
/// In indirect mode, this is the index of the
/// [`IndirectParametersGpuMetadata`] in the
/// `IndirectParametersBuffers::indexed_metadata` or
/// `IndirectParametersBuffers::non_indexed_metadata`.
pub output_or_indirect_parameters_index: u32,
}
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
///
/// This is the variant for indexed meshes. We generate the instances of this
/// structure in the `build_indirect_params.wgsl` compute shader.
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct IndirectParametersIndexed {
/// The number of indices that this mesh has.
pub index_count: u32,
/// The number of instances we are to draw.
pub instance_count: u32,
/// The offset of the first index for this mesh in the index buffer slab.
pub first_index: u32,
/// The offset of the first vertex for this mesh in the vertex buffer slab.
pub base_vertex: u32,
/// The index of the first mesh instance in the `MeshUniform` buffer.
pub first_instance: u32,
}
/// The `wgpu` indirect parameters structure that specifies a GPU draw command.
///
/// This is the variant for non-indexed meshes. We generate the instances of
/// this structure in the `build_indirect_params.wgsl` compute shader.
#[derive(Clone, Copy, Debug, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct IndirectParametersNonIndexed {
/// The number of vertices that this mesh has.
pub vertex_count: u32,
/// The number of instances we are to draw.
pub instance_count: u32,
/// The offset of the first vertex for this mesh in the vertex buffer slab.
pub base_vertex: u32,
/// The index of the first mesh instance in the `Mesh` buffer.
pub first_instance: u32,
}
/// A structure, initialized on CPU and read on GPU, that contains metadata
/// about each batch.
///
/// Each batch will have one instance of this structure.
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct IndirectParametersCpuMetadata {
/// The index of the first instance of this mesh in the array of
/// `MeshUniform`s.
///
/// Note that this is the *first* output index in this batch. Since each
/// instance of this structure refers to arbitrarily many instances, the
/// `MeshUniform`s corresponding to this batch span the indices
/// `base_output_index..(base_output_index + instance_count)`.
pub base_output_index: u32,
/// The index of the batch set that this batch belongs to in the
/// [`IndirectBatchSet`] buffer.
///
/// A *batch set* is a set of meshes that may be multi-drawn together.
/// Multiple batches (and therefore multiple instances of
/// [`IndirectParametersGpuMetadata`] structures) can be part of the same
/// batch set.
pub batch_set_index: u32,
}
/// A structure, written and read GPU, that records how many instances of each
/// mesh are actually to be drawn.
///
/// The GPU mesh preprocessing shader increments the
/// [`Self::early_instance_count`] and [`Self::late_instance_count`] as it
/// determines that meshes are visible. The indirect parameter building shader
/// reads this metadata in order to construct the indirect draw parameters.
///
/// Each batch will have one instance of this structure.
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct IndirectParametersGpuMetadata {
/// The index of the first mesh in this batch in the array of
/// `MeshInputUniform`s.
pub mesh_index: u32,
/// The number of instances that were judged visible last frame.
///
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
/// increments it as it culls mesh instances.
pub early_instance_count: u32,
/// The number of instances that have been judged potentially visible this
/// frame that weren't in the last frame's potentially visible set.
///
/// The CPU sets this value to 0, and the GPU mesh preprocessing shader
/// increments it as it culls mesh instances.
pub late_instance_count: u32,
}
/// A structure, shared between CPU and GPU, that holds the number of on-GPU
/// indirect draw commands for each *batch set*.
///
/// A *batch set* is a set of meshes that may be multi-drawn together.
///
/// If the current hardware and driver support `multi_draw_indirect_count`, the
/// indirect parameters building shader increments
/// [`Self::indirect_parameters_count`] as it generates indirect parameters. The
/// `multi_draw_indirect_count` command reads
/// [`Self::indirect_parameters_count`] in order to determine how many commands
/// belong to each batch set.
#[derive(Clone, Copy, Default, Pod, Zeroable, ShaderType)]
#[repr(C)]
pub struct IndirectBatchSet {
/// The number of indirect parameter commands (i.e. batches) in this batch
/// set.
///
/// The CPU sets this value to 0 before uploading this structure to GPU. The
/// indirect parameters building shader increments this value as it creates
/// indirect parameters. Then the `multi_draw_indirect_count` command reads
/// this value in order to determine how many indirect draw commands to
/// process.
pub indirect_parameters_count: u32,
/// The offset within the `IndirectParametersBuffers::indexed_data` or
/// `IndirectParametersBuffers::non_indexed_data` of the first indirect draw
/// command for this batch set.
///
/// The CPU fills out this value.
pub indirect_parameters_base: u32,
}
/// The buffers containing all the information that indirect draw commands
/// (`multi_draw_indirect`, `multi_draw_indirect_count`) use to draw the scene.
///
/// In addition to the indirect draw buffers themselves, this structure contains
/// the buffers that store [`IndirectParametersGpuMetadata`], which are the
/// structures that culling writes to so that the indirect parameter building
/// pass can determine how many meshes are actually to be drawn.
///
/// These buffers will remain empty if indirect drawing isn't in use.
#[derive(Resource, Deref, DerefMut)]
pub struct IndirectParametersBuffers {
/// A mapping from a phase type ID to the indirect parameters buffers for
/// that phase.
///
/// Examples of phase type IDs are `Opaque3d` and `AlphaMask3d`.
#[deref]
pub buffers: TypeIdMap<UntypedPhaseIndirectParametersBuffers>,
/// If true, this sets the `COPY_SRC` flag on indirect draw parameters so
/// that they can be read back to CPU.
///
/// This is a debugging feature that may reduce performance. It primarily
/// exists for the `occlusion_culling` example.
pub allow_copies_from_indirect_parameter_buffers: bool,
}
impl IndirectParametersBuffers {
/// Initializes a new [`IndirectParametersBuffers`] resource.
pub fn new(allow_copies_from_indirect_parameter_buffers: bool) -> IndirectParametersBuffers {
IndirectParametersBuffers {
buffers: TypeIdMap::default(),
allow_copies_from_indirect_parameter_buffers,
}
}
}
/// The buffers containing all the information that indirect draw commands use
/// to draw the scene, for a single phase.
///
/// This is the version of the structure that has a type parameter, so that the
/// batching for different phases can run in parallel.
///
/// See the [`IndirectParametersBuffers`] documentation for more information.
#[derive(Resource)]
pub struct PhaseIndirectParametersBuffers<PI>
where
PI: PhaseItem,
{
/// The indirect draw buffers for the phase.
pub buffers: UntypedPhaseIndirectParametersBuffers,
phantom: PhantomData<PI>,
}
impl<PI> PhaseIndirectParametersBuffers<PI>
where
PI: PhaseItem,
{
pub fn new(allow_copies_from_indirect_parameter_buffers: bool) -> Self {
PhaseIndirectParametersBuffers {
buffers: UntypedPhaseIndirectParametersBuffers::new(
allow_copies_from_indirect_parameter_buffers,
),
phantom: PhantomData,
}
}
}
/// The buffers containing all the information that indirect draw commands use
/// to draw the scene, for a single phase.
///
/// This is the version of the structure that doesn't have a type parameter, so
/// that it can be inserted into [`IndirectParametersBuffers::buffers`]
///
/// See the [`IndirectParametersBuffers`] documentation for more information.
pub struct UntypedPhaseIndirectParametersBuffers {
/// Information that indirect draw commands use to draw indexed meshes in
/// the scene.
pub indexed: MeshClassIndirectParametersBuffers<IndirectParametersIndexed>,
/// Information that indirect draw commands use to draw non-indexed meshes
/// in the scene.
pub non_indexed: MeshClassIndirectParametersBuffers<IndirectParametersNonIndexed>,
}
impl UntypedPhaseIndirectParametersBuffers {
/// Creates the indirect parameters buffers.
pub fn new(
allow_copies_from_indirect_parameter_buffers: bool,
) -> UntypedPhaseIndirectParametersBuffers {
let mut indirect_parameter_buffer_usages = BufferUsages::STORAGE | BufferUsages::INDIRECT;
if allow_copies_from_indirect_parameter_buffers {
indirect_parameter_buffer_usages |= BufferUsages::COPY_SRC;
}
UntypedPhaseIndirectParametersBuffers {
non_indexed: MeshClassIndirectParametersBuffers::new(
allow_copies_from_indirect_parameter_buffers,
),
indexed: MeshClassIndirectParametersBuffers::new(
allow_copies_from_indirect_parameter_buffers,
),
}
}
/// Reserves space for `count` new batches.
///
/// The `indexed` parameter specifies whether the meshes that these batches
/// correspond to are indexed or not.
pub fn allocate(&mut self, indexed: bool, count: u32) -> u32 {
if indexed {
self.indexed.allocate(count)
} else {
self.non_indexed.allocate(count)
}
}
/// Returns the number of batches currently allocated.
///
/// The `indexed` parameter specifies whether the meshes that these batches
/// correspond to are indexed or not.
fn batch_count(&self, indexed: bool) -> usize {
if indexed {
self.indexed.batch_count()
} else {
self.non_indexed.batch_count()
}
}
/// Returns the number of batch sets currently allocated.
///
/// The `indexed` parameter specifies whether the meshes that these batch
/// sets correspond to are indexed or not.
pub fn batch_set_count(&self, indexed: bool) -> usize {
if indexed {
self.indexed.batch_sets.len()
} else {
self.non_indexed.batch_sets.len()
}
}
/// Adds a new batch set to `Self::indexed_batch_sets` or
/// `Self::non_indexed_batch_sets` as appropriate.
///
/// `indexed` specifies whether the meshes that these batch sets correspond
/// to are indexed or not. `indirect_parameters_base` specifies the offset
/// within `Self::indexed_data` or `Self::non_indexed_data` of the first
/// batch in this batch set.
#[inline]
pub fn add_batch_set(&mut self, indexed: bool, indirect_parameters_base: u32) {
if indexed {
self.indexed.batch_sets.push(IndirectBatchSet {
indirect_parameters_base,
indirect_parameters_count: 0,
});
} else {
self.non_indexed.batch_sets.push(IndirectBatchSet {
indirect_parameters_base,
indirect_parameters_count: 0,
});
}
}
/// Returns the index that a newly-added batch set will have.
///
/// The `indexed` parameter specifies whether the meshes in such a batch set
/// are indexed or not.
pub fn get_next_batch_set_index(&self, indexed: bool) -> Option<NonMaxU32> {
NonMaxU32::new(self.batch_set_count(indexed) as u32)
}
/// Clears out the buffers in preparation for a new frame.
pub fn clear(&mut self) {
self.indexed.clear();
self.non_indexed.clear();
}
}
/// The buffers containing all the information that indirect draw commands use
/// to draw the scene, for a single mesh class (indexed or non-indexed), for a
/// single phase.
pub struct MeshClassIndirectParametersBuffers<IP>
where
IP: Clone + ShaderSize + WriteInto,
{
/// The GPU buffer that stores the indirect draw parameters for the meshes.
///
/// The indirect parameters building shader writes to this buffer, while the
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
/// it to perform the draws.
data: UninitBufferVec<IP>,
/// The GPU buffer that holds the data used to construct indirect draw
/// parameters for meshes.
///
/// The GPU mesh preprocessing shader writes to this buffer, and the
/// indirect parameters building shader reads this buffer to construct the
/// indirect draw parameters.
cpu_metadata: RawBufferVec<IndirectParametersCpuMetadata>,
/// The GPU buffer that holds data built by the GPU used to construct
/// indirect draw parameters for meshes.
///
/// The GPU mesh preprocessing shader writes to this buffer, and the
/// indirect parameters building shader reads this buffer to construct the
/// indirect draw parameters.
gpu_metadata: UninitBufferVec<IndirectParametersGpuMetadata>,
/// The GPU buffer that holds the number of indirect draw commands for each
/// phase of each view, for meshes.
///
/// The indirect parameters building shader writes to this buffer, and the
/// `multi_draw_indirect_count` command reads from it in order to know how
/// many indirect draw commands to process.
batch_sets: RawBufferVec<IndirectBatchSet>,
}
impl<IP> MeshClassIndirectParametersBuffers<IP>
where
IP: Clone + ShaderSize + WriteInto,
{
fn new(
allow_copies_from_indirect_parameter_buffers: bool,
) -> MeshClassIndirectParametersBuffers<IP> {
let mut indirect_parameter_buffer_usages = BufferUsages::STORAGE | BufferUsages::INDIRECT;
if allow_copies_from_indirect_parameter_buffers {
indirect_parameter_buffer_usages |= BufferUsages::COPY_SRC;
}
MeshClassIndirectParametersBuffers {
data: UninitBufferVec::new(indirect_parameter_buffer_usages),
cpu_metadata: RawBufferVec::new(BufferUsages::STORAGE),
gpu_metadata: UninitBufferVec::new(BufferUsages::STORAGE),
batch_sets: RawBufferVec::new(indirect_parameter_buffer_usages),
}
}
/// Returns the GPU buffer that stores the indirect draw parameters for
/// indexed meshes.
///
/// The indirect parameters building shader writes to this buffer, while the
/// `multi_draw_indirect` or `multi_draw_indirect_count` commands read from
/// it to perform the draws.
#[inline]
pub fn data_buffer(&self) -> Option<&Buffer> {
self.data.buffer()
}
/// Returns the GPU buffer that holds the CPU-constructed data used to
/// construct indirect draw parameters for meshes.
///
/// The CPU writes to this buffer, and the indirect parameters building
/// shader reads this buffer to construct the indirect draw parameters.
#[inline]
pub fn cpu_metadata_buffer(&self) -> Option<&Buffer> {
self.cpu_metadata.buffer()
}
/// Returns the GPU buffer that holds the GPU-constructed data used to
/// construct indirect draw parameters for meshes.
///
/// The GPU mesh preprocessing shader writes to this buffer, and the
/// indirect parameters building shader reads this buffer to construct the
/// indirect draw parameters.
#[inline]
pub fn gpu_metadata_buffer(&self) -> Option<&Buffer> {
self.gpu_metadata.buffer()
}
/// Returns the GPU buffer that holds the number of indirect draw commands
/// for each phase of each view.
///
/// The indirect parameters building shader writes to this buffer, and the
/// `multi_draw_indirect_count` command reads from it in order to know how
/// many indirect draw commands to process.
#[inline]
pub fn batch_sets_buffer(&self) -> Option<&Buffer> {
self.batch_sets.buffer()
}
/// Reserves space for `count` new batches.
///
/// This allocates in the [`Self::cpu_metadata`], [`Self::gpu_metadata`],
/// and [`Self::data`] buffers.
fn allocate(&mut self, count: u32) -> u32 {
let length = self.data.len();
self.cpu_metadata.reserve_internal(count as usize);
self.gpu_metadata.add_multiple(count as usize);
for _ in 0..count {
self.data.add();
self.cpu_metadata
.push(IndirectParametersCpuMetadata::default());
}
length as u32
}
/// Sets the [`IndirectParametersCpuMetadata`] for the mesh at the given
/// index.
pub fn set(&mut self, index: u32, value: IndirectParametersCpuMetadata) {
self.cpu_metadata.set(index, value);
}
/// Returns the number of batches corresponding to meshes that are currently
/// allocated.
#[inline]
pub fn batch_count(&self) -> usize {
self.data.len()
}
/// Clears out all the buffers in preparation for a new frame.
pub fn clear(&mut self) {
self.data.clear();
self.cpu_metadata.clear();
self.gpu_metadata.clear();
self.batch_sets.clear();
}
}
impl Default for IndirectParametersBuffers {
fn default() -> Self {
// By default, we don't allow GPU indirect parameter mapping, since
// that's a debugging option.
Self::new(false)
}
}
impl FromWorld for GpuPreprocessingSupport {
fn from_world(world: &mut World) -> Self {
let adapter = world.resource::<RenderAdapter>();
let device = world.resource::<RenderDevice>();
// Filter Android drivers that are incompatible with GPU preprocessing:
// - We filter out Adreno 730 and earlier GPUs (except 720, as it's newer
// than 730).
// - We filter out Mali GPUs with driver versions lower than 48.
fn is_non_supported_android_device(adapter: &RenderAdapter) -> bool {
crate::get_adreno_model(adapter).is_some_and(|model| model != 720 && model <= 730)
|| crate::get_mali_driver_version(adapter).is_some_and(|version| version < 48)
}
let culling_feature_support = device.features().contains(
Features::INDIRECT_FIRST_INSTANCE
| Features::MULTI_DRAW_INDIRECT
| Features::PUSH_CONSTANTS,
);
// Depth downsampling for occlusion culling requires 12 textures
let limit_support = device.limits().max_storage_textures_per_shader_stage >= 12 &&
// Even if the adapter supports compute, we might be simulating a lack of
// compute via device limits (see `WgpuSettingsPriority::WebGL2` and
// `wgpu::Limits::downlevel_webgl2_defaults()`). This will have set all the
// `max_compute_*` limits to zero, so we arbitrarily pick one as a canary.
device.limits().max_compute_workgroup_storage_size != 0;
let downlevel_support = adapter.get_downlevel_capabilities().flags.contains(
DownlevelFlags::COMPUTE_SHADERS |
DownlevelFlags::VERTEX_AND_INSTANCE_INDEX_RESPECTS_RESPECTIVE_FIRST_VALUE_IN_INDIRECT_DRAW
);
let max_supported_mode = if device.limits().max_compute_workgroup_size_x == 0
|| is_non_supported_android_device(adapter)
{
info!(
"GPU preprocessing is not supported on this device. \
Falling back to CPU preprocessing.",
);
GpuPreprocessingMode::None
} else if !(culling_feature_support && limit_support && downlevel_support) {
info!("Some GPU preprocessing are limited on this device.");
GpuPreprocessingMode::PreprocessingOnly
} else {
info!("GPU preprocessing is fully supported on this device.");
GpuPreprocessingMode::Culling
};
GpuPreprocessingSupport { max_supported_mode }
}
}
impl<BD, BDI> BatchedInstanceBuffers<BD, BDI>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
BDI: Pod + Sync + Send + Default + 'static,
{
/// Creates new buffers.
pub fn new() -> Self {
Self::default()
}
/// Clears out the buffers in preparation for a new frame.
pub fn clear(&mut self) {
for phase_instance_buffer in self.phase_instance_buffers.values_mut() {
phase_instance_buffer.clear();
}
}
}
impl<BD> UntypedPhaseBatchedInstanceBuffers<BD>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
{
pub fn new() -> Self {
UntypedPhaseBatchedInstanceBuffers {
data_buffer: UninitBufferVec::new(BufferUsages::STORAGE),
work_item_buffers: HashMap::default(),
late_indexed_indirect_parameters_buffer: RawBufferVec::new(
BufferUsages::STORAGE | BufferUsages::INDIRECT,
),
late_non_indexed_indirect_parameters_buffer: RawBufferVec::new(
BufferUsages::STORAGE | BufferUsages::INDIRECT,
),
}
}
/// Returns the binding of the buffer that contains the per-instance data.
///
/// This buffer needs to be filled in via a compute shader.
pub fn instance_data_binding(&self) -> Option<BindingResource> {
self.data_buffer
.buffer()
.map(|buffer| buffer.as_entire_binding())
}
/// Clears out the buffers in preparation for a new frame.
pub fn clear(&mut self) {
self.data_buffer.clear();
self.late_indexed_indirect_parameters_buffer.clear();
self.late_non_indexed_indirect_parameters_buffer.clear();
// Clear each individual set of buffers, but don't depopulate the hash
// table. We want to avoid reallocating these vectors every frame.
for view_work_item_buffers in self.work_item_buffers.values_mut() {
view_work_item_buffers.clear();
}
}
}
impl<BD> Default for UntypedPhaseBatchedInstanceBuffers<BD>
where
BD: GpuArrayBufferable + Sync + Send + 'static,
{
fn default() -> Self {
Self::new()
}
}
/// Information about a render batch that we're building up during a sorted
/// render phase.
struct SortedRenderBatch<F>
where
F: GetBatchData,
{
/// The index of the first phase item in this batch in the list of phase
/// items.
phase_item_start_index: u32,
/// The index of the first instance in this batch in the instance buffer.
instance_start_index: u32,
/// True if the mesh in question has an index buffer; false otherwise.
indexed: bool,
/// The index of the indirect parameters for this batch in the
/// [`IndirectParametersBuffers`].
///
/// If CPU culling is being used, then this will be `None`.
indirect_parameters_index: Option<NonMaxU32>,
/// Metadata that can be used to determine whether an instance can be placed
/// into this batch.
///
/// If `None`, the item inside is unbatchable.
meta: Option<BatchMeta<F::CompareData>>,
}
impl<F> SortedRenderBatch<F>
where
F: GetBatchData,
{
/// Finalizes this batch and updates the [`SortedRenderPhase`] with the
/// appropriate indices.
///
/// `instance_end_index` is the index of the last instance in this batch
/// plus one.
fn flush<I>(
self,
instance_end_index: u32,
phase: &mut SortedRenderPhase<I>,
phase_indirect_parameters_buffers: &mut UntypedPhaseIndirectParametersBuffers,
) where
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
{
let (batch_range, batch_extra_index) =
phase.items[self.phase_item_start_index as usize].batch_range_and_extra_index_mut();
*batch_range = self.instance_start_index..instance_end_index;
*batch_extra_index = match self.indirect_parameters_index {
Some(indirect_parameters_index) => PhaseItemExtraIndex::IndirectParametersIndex {
range: u32::from(indirect_parameters_index)
..(u32::from(indirect_parameters_index) + 1),
batch_set_index: None,
},
None => PhaseItemExtraIndex::None,
};
if let Some(indirect_parameters_index) = self.indirect_parameters_index {
phase_indirect_parameters_buffers
.add_batch_set(self.indexed, indirect_parameters_index.into());
}
}
}
/// A system that runs early in extraction and clears out all the
/// [`BatchedInstanceBuffers`] for the frame.
///
/// We have to run this during extraction because, if GPU preprocessing is in
/// use, the extraction phase will write to the mesh input uniform buffers
/// directly, so the buffers need to be cleared before then.
pub fn clear_batched_gpu_instance_buffers<GFBD>(
gpu_batched_instance_buffers: Option<
ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
>,
) where
GFBD: GetFullBatchData,
{
// Don't clear the entire table, because that would delete the buffers, and
// we want to reuse those allocations.
if let Some(mut gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
gpu_batched_instance_buffers.clear();
}
}
/// A system that removes GPU preprocessing work item buffers that correspond to
/// deleted [`ExtractedView`]s.
///
/// This is a separate system from [`clear_batched_gpu_instance_buffers`]
/// because [`ExtractedView`]s aren't created until after the extraction phase
/// is completed.
pub fn delete_old_work_item_buffers<GFBD>(
mut gpu_batched_instance_buffers: ResMut<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
extracted_views: Query<&ExtractedView>,
) where
GFBD: GetFullBatchData,
{
let retained_view_entities: HashSet<_> = extracted_views
.iter()
.map(|extracted_view| extracted_view.retained_view_entity)
.collect();
for phase_instance_buffers in gpu_batched_instance_buffers
.phase_instance_buffers
.values_mut()
{
phase_instance_buffers
.work_item_buffers
.retain(|retained_view_entity, _| {
retained_view_entities.contains(retained_view_entity)
});
}
}
/// Batch the items in a sorted render phase, when GPU instance buffer building
/// is in use. This means comparing metadata needed to draw each phase item and
/// trying to combine the draws into a batch.
pub fn batch_and_prepare_sorted_render_phase<I, GFBD>(
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<I, GFBD::BufferData>>,
mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<I>>,
mut sorted_render_phases: ResMut<ViewSortedRenderPhases<I>>,
mut views: Query<(
&ExtractedView,
Has<NoIndirectDrawing>,
Has<OcclusionCulling>,
)>,
system_param_item: StaticSystemParam<GFBD::Param>,
) where
I: CachedRenderPipelinePhaseItem + SortedPhaseItem,
GFBD: GetFullBatchData,
{
// We only process GPU-built batch data in this function.
let UntypedPhaseBatchedInstanceBuffers {
ref mut data_buffer,
ref mut work_item_buffers,
ref mut late_indexed_indirect_parameters_buffer,
ref mut late_non_indexed_indirect_parameters_buffer,
} = phase_batched_instance_buffers.buffers;
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
let Some(phase) = sorted_render_phases.get_mut(&extracted_view.retained_view_entity) else {
continue;
};
// Create the work item buffer if necessary.
let work_item_buffer = get_or_create_work_item_buffer::<I>(
work_item_buffers,
extracted_view.retained_view_entity,
no_indirect_drawing,
gpu_occlusion_culling,
);
// Initialize those work item buffers in preparation for this new frame.
init_work_item_buffers(
work_item_buffer,
late_indexed_indirect_parameters_buffer,
late_non_indexed_indirect_parameters_buffer,
);
// Walk through the list of phase items, building up batches as we go.
let mut batch: Option<SortedRenderBatch<GFBD>> = None;
for current_index in 0..phase.items.len() {
// Get the index of the input data, and comparison metadata, for
// this entity.
let item = &phase.items[current_index];
let entity = item.main_entity();
let item_is_indexed = item.indexed();
let current_batch_input_index =
GFBD::get_index_and_compare_data(&system_param_item, entity);
// Unpack that index and metadata. Note that it's possible for index
// and/or metadata to not be present, which signifies that this
// entity is unbatchable. In that case, we break the batch here.
// If the index isn't present the item is not part of this pipeline and so will be skipped.
let Some((current_input_index, current_meta)) = current_batch_input_index else {
// Break a batch if we need to.
if let Some(batch) = batch.take() {
batch.flush(
data_buffer.len() as u32,
phase,
&mut phase_indirect_parameters_buffers.buffers,
);
}
continue;
};
let current_meta =
current_meta.map(|meta| BatchMeta::new(&phase.items[current_index], meta));
// Determine if this entity can be included in the batch we're
// building up.
let can_batch = batch.as_ref().is_some_and(|batch| {
// `None` for metadata indicates that the items are unbatchable.
match (¤t_meta, &batch.meta) {
(Some(current_meta), Some(batch_meta)) => current_meta == batch_meta,
(_, _) => false,
}
});
// Make space in the data buffer for this instance.
let output_index = data_buffer.add() as u32;
// If we can't batch, break the existing batch and make a new one.
if !can_batch {
// Break a batch if we need to.
if let Some(batch) = batch.take() {
batch.flush(
output_index,
phase,
&mut phase_indirect_parameters_buffers.buffers,
);
}
let indirect_parameters_index = if no_indirect_drawing {
None
} else if item_is_indexed {
Some(
phase_indirect_parameters_buffers
.buffers
.indexed
.allocate(1),
)
} else {
Some(
phase_indirect_parameters_buffers
.buffers
.non_indexed
.allocate(1),
)
};
// Start a new batch.
if let Some(indirect_parameters_index) = indirect_parameters_index {
GFBD::write_batch_indirect_parameters_metadata(
item_is_indexed,
output_index,
None,
&mut phase_indirect_parameters_buffers.buffers,
indirect_parameters_index,
);
};
batch = Some(SortedRenderBatch {
phase_item_start_index: current_index as u32,
instance_start_index: output_index,
indexed: item_is_indexed,
indirect_parameters_index: indirect_parameters_index.and_then(NonMaxU32::new),
meta: current_meta,
});
}
// Add a new preprocessing work item so that the preprocessing
// shader will copy the per-instance data over.
if let Some(batch) = batch.as_ref() {
work_item_buffer.push(
item_is_indexed,
PreprocessWorkItem {
input_index: current_input_index.into(),
output_or_indirect_parameters_index: match (
no_indirect_drawing,
batch.indirect_parameters_index,
) {
(true, _) => output_index,
(false, Some(indirect_parameters_index)) => {
indirect_parameters_index.into()
}
(false, None) => 0,
},
},
);
}
}
// Flush the final batch if necessary.
if let Some(batch) = batch.take() {
batch.flush(
data_buffer.len() as u32,
phase,
&mut phase_indirect_parameters_buffers.buffers,
);
}
}
}
/// Creates batches for a render phase that uses bins.
pub fn batch_and_prepare_binned_render_phase<BPI, GFBD>(
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<BPI, GFBD::BufferData>>,
phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<BPI>>,
mut binned_render_phases: ResMut<ViewBinnedRenderPhases<BPI>>,
mut views: Query<
(
&ExtractedView,
Has<NoIndirectDrawing>,
Has<OcclusionCulling>,
),
With<ExtractedView>,
>,
param: StaticSystemParam<GFBD::Param>,
) where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
let system_param_item = param.into_inner();
let phase_indirect_parameters_buffers = phase_indirect_parameters_buffers.into_inner();
let UntypedPhaseBatchedInstanceBuffers {
ref mut data_buffer,
ref mut work_item_buffers,
ref mut late_indexed_indirect_parameters_buffer,
ref mut late_non_indexed_indirect_parameters_buffer,
} = phase_batched_instance_buffers.buffers;
for (extracted_view, no_indirect_drawing, gpu_occlusion_culling) in &mut views {
let Some(phase) = binned_render_phases.get_mut(&extracted_view.retained_view_entity) else {
continue;
};
// Create the work item buffer if necessary; otherwise, just mark it as
// used this frame.
let work_item_buffer = get_or_create_work_item_buffer::<BPI>(
work_item_buffers,
extracted_view.retained_view_entity,
no_indirect_drawing,
gpu_occlusion_culling,
);
// Initialize those work item buffers in preparation for this new frame.
init_work_item_buffers(
work_item_buffer,
late_indexed_indirect_parameters_buffer,
late_non_indexed_indirect_parameters_buffer,
);
// Prepare multidrawables.
if let (
&mut BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut batch_sets),
&mut PreprocessWorkItemBuffers::Indirect {
indexed: ref mut indexed_work_item_buffer,
non_indexed: ref mut non_indexed_work_item_buffer,
gpu_occlusion_culling: ref mut gpu_occlusion_culling_buffers,
},
) = (&mut phase.batch_sets, &mut *work_item_buffer)
{
let mut output_index = data_buffer.len() as u32;
// Initialize the state for both indexed and non-indexed meshes.
let mut indexed_preparer: MultidrawableBatchSetPreparer<BPI, GFBD> =
MultidrawableBatchSetPreparer::new(
phase_indirect_parameters_buffers.buffers.batch_count(true) as u32,
phase_indirect_parameters_buffers
.buffers
.indexed
.batch_sets
.len() as u32,
);
let mut non_indexed_preparer: MultidrawableBatchSetPreparer<BPI, GFBD> =
MultidrawableBatchSetPreparer::new(
phase_indirect_parameters_buffers.buffers.batch_count(false) as u32,
phase_indirect_parameters_buffers
.buffers
.non_indexed
.batch_sets
.len() as u32,
);
// Prepare each batch set.
for (batch_set_key, bins) in &phase.multidrawable_meshes {
if batch_set_key.indexed() {
indexed_preparer.prepare_multidrawable_binned_batch_set(
bins,
&mut output_index,
data_buffer,
indexed_work_item_buffer,
&mut phase_indirect_parameters_buffers.buffers.indexed,
batch_sets,
);
} else {
non_indexed_preparer.prepare_multidrawable_binned_batch_set(
bins,
&mut output_index,
data_buffer,
non_indexed_work_item_buffer,
&mut phase_indirect_parameters_buffers.buffers.non_indexed,
batch_sets,
);
}
}
// Reserve space in the occlusion culling buffers, if necessary.
if let Some(gpu_occlusion_culling_buffers) = gpu_occlusion_culling_buffers {
gpu_occlusion_culling_buffers
.late_indexed
.add_multiple(indexed_preparer.work_item_count);
gpu_occlusion_culling_buffers
.late_non_indexed
.add_multiple(non_indexed_preparer.work_item_count);
}
}
// Prepare batchables.
for (key, bin) in &phase.batchable_meshes {
let mut batch: Option<BinnedRenderPhaseBatch> = None;
for (&main_entity, &input_index) in bin.entities() {
let output_index = data_buffer.add() as u32;
match batch {
Some(ref mut batch) => {
batch.instance_range.end = output_index + 1;
// Append to the current batch.
//
// If we're in indirect mode, then we write the first
// output index of this batch, so that we have a
// tightly-packed buffer if GPU culling discards some of
// the instances. Otherwise, we can just write the
// output index directly.
work_item_buffer.push(
key.0.indexed(),
PreprocessWorkItem {
input_index: *input_index,
output_or_indirect_parameters_index: match (
no_indirect_drawing,
&batch.extra_index,
) {
(true, _) => output_index,
(
false,
PhaseItemExtraIndex::IndirectParametersIndex {
range: indirect_parameters_range,
..
},
) => indirect_parameters_range.start,
(false, &PhaseItemExtraIndex::DynamicOffset(_))
| (false, &PhaseItemExtraIndex::None) => 0,
},
},
);
}
None if !no_indirect_drawing => {
// Start a new batch, in indirect mode.
let indirect_parameters_index = phase_indirect_parameters_buffers
.buffers
.allocate(key.0.indexed(), 1);
let batch_set_index = phase_indirect_parameters_buffers
.buffers
.get_next_batch_set_index(key.0.indexed());
GFBD::write_batch_indirect_parameters_metadata(
key.0.indexed(),
output_index,
batch_set_index,
&mut phase_indirect_parameters_buffers.buffers,
indirect_parameters_index,
);
work_item_buffer.push(
key.0.indexed(),
PreprocessWorkItem {
input_index: *input_index,
output_or_indirect_parameters_index: indirect_parameters_index,
},
);
batch = Some(BinnedRenderPhaseBatch {
representative_entity: (Entity::PLACEHOLDER, main_entity),
instance_range: output_index..output_index + 1,
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
range: indirect_parameters_index..(indirect_parameters_index + 1),
batch_set_index: None,
},
});
}
None => {
// Start a new batch, in direct mode.
work_item_buffer.push(
key.0.indexed(),
PreprocessWorkItem {
input_index: *input_index,
output_or_indirect_parameters_index: output_index,
},
);
batch = Some(BinnedRenderPhaseBatch {
representative_entity: (Entity::PLACEHOLDER, main_entity),
instance_range: output_index..output_index + 1,
extra_index: PhaseItemExtraIndex::None,
});
}
}
}
if let Some(batch) = batch {
match phase.batch_sets {
BinnedRenderPhaseBatchSets::DynamicUniforms(_) => {
error!("Dynamic uniform batch sets shouldn't be used here");
}
BinnedRenderPhaseBatchSets::Direct(ref mut vec) => {
vec.push(batch);
}
BinnedRenderPhaseBatchSets::MultidrawIndirect(ref mut vec) => {
// The Bevy renderer will never mark a mesh as batchable
// but not multidrawable if multidraw is in use.
// However, custom render pipelines might do so, such as
// the `specialized_mesh_pipeline` example.
vec.push(BinnedRenderPhaseBatchSet {
first_batch: batch,
batch_count: 1,
bin_key: key.1.clone(),
index: phase_indirect_parameters_buffers
.buffers
.batch_set_count(key.0.indexed())
as u32,
});
}
}
}
}
// Prepare unbatchables.
for (key, unbatchables) in &mut phase.unbatchable_meshes {
// Allocate the indirect parameters if necessary.
let mut indirect_parameters_offset = if no_indirect_drawing {
None
} else if key.0.indexed() {
Some(
phase_indirect_parameters_buffers
.buffers
.indexed
.allocate(unbatchables.entities.len() as u32),
)
} else {
Some(
phase_indirect_parameters_buffers
.buffers
.non_indexed
.allocate(unbatchables.entities.len() as u32),
)
};
for main_entity in unbatchables.entities.keys() {
let Some(input_index) = GFBD::get_binned_index(&system_param_item, *main_entity)
else {
continue;
};
let output_index = data_buffer.add() as u32;
if let Some(ref mut indirect_parameters_index) = indirect_parameters_offset {
// We're in indirect mode, so add an indirect parameters
// index.
GFBD::write_batch_indirect_parameters_metadata(
key.0.indexed(),
output_index,
None,
&mut phase_indirect_parameters_buffers.buffers,
*indirect_parameters_index,
);
work_item_buffer.push(
key.0.indexed(),
PreprocessWorkItem {
input_index: input_index.into(),
output_or_indirect_parameters_index: *indirect_parameters_index,
},
);
unbatchables
.buffer_indices
.add(UnbatchableBinnedEntityIndices {
instance_index: *indirect_parameters_index,
extra_index: PhaseItemExtraIndex::IndirectParametersIndex {
range: *indirect_parameters_index..(*indirect_parameters_index + 1),
batch_set_index: None,
},
});
phase_indirect_parameters_buffers
.buffers
.add_batch_set(key.0.indexed(), *indirect_parameters_index);
*indirect_parameters_index += 1;
} else {
work_item_buffer.push(
key.0.indexed(),
PreprocessWorkItem {
input_index: input_index.into(),
output_or_indirect_parameters_index: output_index,
},
);
unbatchables
.buffer_indices
.add(UnbatchableBinnedEntityIndices {
instance_index: output_index,
extra_index: PhaseItemExtraIndex::None,
});
}
}
}
}
}
/// The state that [`batch_and_prepare_binned_render_phase`] uses to construct
/// multidrawable batch sets.
///
/// The [`batch_and_prepare_binned_render_phase`] system maintains two of these:
/// one for indexed meshes and one for non-indexed meshes.
struct MultidrawableBatchSetPreparer<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
/// The offset in the indirect parameters buffer at which the next indirect
/// parameters will be written.
indirect_parameters_index: u32,
/// The number of batch sets we've built so far for this mesh class.
batch_set_index: u32,
/// The number of work items we've emitted so far for this mesh class.
work_item_count: usize,
phantom: PhantomData<(BPI, GFBD)>,
}
impl<BPI, GFBD> MultidrawableBatchSetPreparer<BPI, GFBD>
where
BPI: BinnedPhaseItem,
GFBD: GetFullBatchData,
{
/// Creates a new [`MultidrawableBatchSetPreparer`] that will start writing
/// indirect parameters and batch sets at the given indices.
#[inline]
fn new(initial_indirect_parameters_index: u32, initial_batch_set_index: u32) -> Self {
MultidrawableBatchSetPreparer {
indirect_parameters_index: initial_indirect_parameters_index,
batch_set_index: initial_batch_set_index,
work_item_count: 0,
phantom: PhantomData,
}
}
/// Creates batch sets and writes the GPU data needed to draw all visible
/// entities of one mesh class in the given batch set.
///
/// The *mesh class* represents whether the mesh has indices or not.
#[inline]
fn prepare_multidrawable_binned_batch_set<IP>(
&mut self,
bins: &IndexMap<BPI::BinKey, RenderBin>,
output_index: &mut u32,
data_buffer: &mut UninitBufferVec<GFBD::BufferData>,
indexed_work_item_buffer: &mut RawBufferVec<PreprocessWorkItem>,
mesh_class_buffers: &mut MeshClassIndirectParametersBuffers<IP>,
batch_sets: &mut Vec<BinnedRenderPhaseBatchSet<BPI::BinKey>>,
) where
IP: Clone + ShaderSize + WriteInto,
{
let current_indexed_batch_set_index = self.batch_set_index;
let current_output_index = *output_index;
let indirect_parameters_base = self.indirect_parameters_index;
// We're going to write the first entity into the batch set. Do this
// here so that we can preload the bin into cache as a side effect.
let Some((first_bin_key, first_bin)) = bins.iter().next() else {
return;
};
let first_bin_len = first_bin.entities().len();
let first_bin_entity = first_bin
.entities()
.keys()
.next()
.copied()
.unwrap_or(MainEntity::from(Entity::PLACEHOLDER));
// Traverse the batch set, processing each bin.
for bin in bins.values() {
// Record the first output index for this batch, as well as its own
// index.
mesh_class_buffers
.cpu_metadata
.push(IndirectParametersCpuMetadata {
base_output_index: *output_index,
batch_set_index: self.batch_set_index,
});
// Traverse the bin, pushing `PreprocessWorkItem`s for each entity
// within it. This is a hot loop, so make it as fast as possible.
for &input_index in bin.entities().values() {
indexed_work_item_buffer.push(PreprocessWorkItem {
input_index: *input_index,
output_or_indirect_parameters_index: self.indirect_parameters_index,
});
}
// Reserve space for the appropriate number of entities in the data
// buffer. Also, advance the output index and work item count.
let bin_entity_count = bin.entities().len();
data_buffer.add_multiple(bin_entity_count);
*output_index += bin_entity_count as u32;
self.work_item_count += bin_entity_count;
self.indirect_parameters_index += 1;
}
// Reserve space for the bins in this batch set in the GPU buffers.
let bin_count = bins.len();
mesh_class_buffers.gpu_metadata.add_multiple(bin_count);
mesh_class_buffers.data.add_multiple(bin_count);
// Write the information the GPU will need about this batch set.
mesh_class_buffers.batch_sets.push(IndirectBatchSet {
indirect_parameters_base,
indirect_parameters_count: 0,
});
self.batch_set_index += 1;
// Record the batch set. The render node later processes this record to
// render the batches.
batch_sets.push(BinnedRenderPhaseBatchSet {
first_batch: BinnedRenderPhaseBatch {
representative_entity: (Entity::PLACEHOLDER, first_bin_entity),
instance_range: current_output_index..(current_output_index + first_bin_len as u32),
extra_index: PhaseItemExtraIndex::maybe_indirect_parameters_index(NonMaxU32::new(
indirect_parameters_base,
)),
},
bin_key: (*first_bin_key).clone(),
batch_count: self.indirect_parameters_index - indirect_parameters_base,
index: current_indexed_batch_set_index,
});
}
}
/// A system that gathers up the per-phase GPU buffers and inserts them into the
/// [`BatchedInstanceBuffers`] and [`IndirectParametersBuffers`] tables.
///
/// This runs after the [`batch_and_prepare_binned_render_phase`] or
/// [`batch_and_prepare_sorted_render_phase`] systems. It takes the per-phase
/// [`PhaseBatchedInstanceBuffers`] and [`PhaseIndirectParametersBuffers`]
/// resources and inserts them into the global [`BatchedInstanceBuffers`] and
/// [`IndirectParametersBuffers`] tables.
///
/// This system exists so that the [`batch_and_prepare_binned_render_phase`] and
/// [`batch_and_prepare_sorted_render_phase`] can run in parallel with one
/// another. If those two systems manipulated [`BatchedInstanceBuffers`] and
/// [`IndirectParametersBuffers`] directly, then they wouldn't be able to run in
/// parallel.
pub fn collect_buffers_for_phase<PI, GFBD>(
mut phase_batched_instance_buffers: ResMut<PhaseBatchedInstanceBuffers<PI, GFBD::BufferData>>,
mut phase_indirect_parameters_buffers: ResMut<PhaseIndirectParametersBuffers<PI>>,
mut batched_instance_buffers: ResMut<
BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
>,
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
) where
PI: PhaseItem,
GFBD: GetFullBatchData + Send + Sync + 'static,
{
// Insert the `PhaseBatchedInstanceBuffers` into the global table. Replace
// the contents of the per-phase resource with the old batched instance
// buffers in order to reuse allocations.
let untyped_phase_batched_instance_buffers =
mem::take(&mut phase_batched_instance_buffers.buffers);
if let Some(mut old_untyped_phase_batched_instance_buffers) = batched_instance_buffers
.phase_instance_buffers
.insert(TypeId::of::<PI>(), untyped_phase_batched_instance_buffers)
{
old_untyped_phase_batched_instance_buffers.clear();
phase_batched_instance_buffers.buffers = old_untyped_phase_batched_instance_buffers;
}
// Insert the `PhaseIndirectParametersBuffers` into the global table.
// Replace the contents of the per-phase resource with the old indirect
// parameters buffers in order to reuse allocations.
let untyped_phase_indirect_parameters_buffers = mem::replace(
&mut phase_indirect_parameters_buffers.buffers,
UntypedPhaseIndirectParametersBuffers::new(
indirect_parameters_buffers.allow_copies_from_indirect_parameter_buffers,
),
);
if let Some(mut old_untyped_phase_indirect_parameters_buffers) = indirect_parameters_buffers
.insert(
TypeId::of::<PI>(),
untyped_phase_indirect_parameters_buffers,
)
{
old_untyped_phase_indirect_parameters_buffers.clear();
phase_indirect_parameters_buffers.buffers = old_untyped_phase_indirect_parameters_buffers;
}
}
/// A system that writes all instance buffers to the GPU.
pub fn write_batched_instance_buffers<GFBD>(
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
gpu_array_buffer: ResMut<BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>>,
) where
GFBD: GetFullBatchData,
{
let BatchedInstanceBuffers {
current_input_buffer,
previous_input_buffer,
phase_instance_buffers,
} = gpu_array_buffer.into_inner();
current_input_buffer
.buffer
.write_buffer(&render_device, &render_queue);
previous_input_buffer
.buffer
.write_buffer(&render_device, &render_queue);
for phase_instance_buffers in phase_instance_buffers.values_mut() {
let UntypedPhaseBatchedInstanceBuffers {
ref mut data_buffer,
ref mut work_item_buffers,
ref mut late_indexed_indirect_parameters_buffer,
ref mut late_non_indexed_indirect_parameters_buffer,
} = *phase_instance_buffers;
data_buffer.write_buffer(&render_device);
late_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
late_non_indexed_indirect_parameters_buffer.write_buffer(&render_device, &render_queue);
for phase_work_item_buffers in work_item_buffers.values_mut() {
match *phase_work_item_buffers {
PreprocessWorkItemBuffers::Direct(ref mut buffer_vec) => {
buffer_vec.write_buffer(&render_device, &render_queue);
}
PreprocessWorkItemBuffers::Indirect {
ref mut indexed,
ref mut non_indexed,
ref mut gpu_occlusion_culling,
} => {
indexed.write_buffer(&render_device, &render_queue);
non_indexed.write_buffer(&render_device, &render_queue);
if let Some(GpuOcclusionCullingWorkItemBuffers {
ref mut late_indexed,
ref mut late_non_indexed,
late_indirect_parameters_indexed_offset: _,
late_indirect_parameters_non_indexed_offset: _,
}) = *gpu_occlusion_culling
{
if !late_indexed.is_empty() {
late_indexed.write_buffer(&render_device);
}
if !late_non_indexed.is_empty() {
late_non_indexed.write_buffer(&render_device);
}
}
}
}
}
}
}
pub fn clear_indirect_parameters_buffers(
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
) {
for phase_indirect_parameters_buffers in indirect_parameters_buffers.values_mut() {
phase_indirect_parameters_buffers.clear();
}
}
pub fn write_indirect_parameters_buffers(
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut indirect_parameters_buffers: ResMut<IndirectParametersBuffers>,
) {
for phase_indirect_parameters_buffers in indirect_parameters_buffers.values_mut() {
phase_indirect_parameters_buffers
.indexed
.data
.write_buffer(&render_device);
phase_indirect_parameters_buffers
.non_indexed
.data
.write_buffer(&render_device);
phase_indirect_parameters_buffers
.indexed
.cpu_metadata
.write_buffer(&render_device, &render_queue);
phase_indirect_parameters_buffers
.non_indexed
.cpu_metadata
.write_buffer(&render_device, &render_queue);
phase_indirect_parameters_buffers
.non_indexed
.gpu_metadata
.write_buffer(&render_device);
phase_indirect_parameters_buffers
.indexed
.gpu_metadata
.write_buffer(&render_device);
phase_indirect_parameters_buffers
.indexed
.batch_sets
.write_buffer(&render_device, &render_queue);
phase_indirect_parameters_buffers
.non_indexed
.batch_sets
.write_buffer(&render_device, &render_queue);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn instance_buffer_correct_behavior() {
let mut instance_buffer = InstanceInputUniformBuffer::new();
let index = instance_buffer.add(2);
instance_buffer.remove(index);
assert_eq!(instance_buffer.get_unchecked(index), 2);
assert_eq!(instance_buffer.get(index), None);
instance_buffer.add(5);
assert_eq!(instance_buffer.buffer().len(), 1);
}
}