bevy_render/camera/projection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
use core::fmt::Debug;
use crate::{primitives::Frustum, view::VisibilitySystems};
use bevy_app::{App, Plugin, PostStartup, PostUpdate};
use bevy_asset::AssetEvents;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::prelude::*;
use bevy_math::{ops, AspectRatio, Mat4, Rect, Vec2, Vec3A, Vec4};
use bevy_reflect::{std_traits::ReflectDefault, Reflect, ReflectDeserialize, ReflectSerialize};
use bevy_transform::{components::GlobalTransform, TransformSystem};
use derive_more::derive::From;
use serde::{Deserialize, Serialize};
/// Adds [`Camera`](crate::camera::Camera) driver systems for a given projection type.
///
/// If you are using `bevy_pbr`, then you need to add `PbrProjectionPlugin` along with this.
#[derive(Default)]
pub struct CameraProjectionPlugin;
impl Plugin for CameraProjectionPlugin {
fn build(&self, app: &mut App) {
app.register_type::<Projection>()
.register_type::<PerspectiveProjection>()
.register_type::<OrthographicProjection>()
.register_type::<CustomProjection>()
.add_systems(
PostStartup,
crate::camera::camera_system.in_set(CameraUpdateSystem),
)
.add_systems(
PostUpdate,
(
crate::camera::camera_system
.in_set(CameraUpdateSystem)
.before(AssetEvents),
crate::view::update_frusta
.in_set(VisibilitySystems::UpdateFrusta)
.after(crate::camera::camera_system)
.after(TransformSystem::TransformPropagate),
),
);
}
}
/// Label for [`camera_system<T>`], shared across all `T`.
///
/// [`camera_system<T>`]: crate::camera::camera_system
#[derive(SystemSet, Clone, Eq, PartialEq, Hash, Debug)]
pub struct CameraUpdateSystem;
/// Describes a type that can generate a projection matrix, allowing it to be added to a
/// [`Camera`]'s [`Projection`] component.
///
/// Once implemented, the projection can be added to a camera using [`Projection::custom`].
///
/// The projection will be automatically updated as the render area is resized. This is useful when,
/// for example, a projection type has a field like `fov` that should change when the window width
/// is changed but not when the height changes.
///
/// This trait is implemented by bevy's built-in projections [`PerspectiveProjection`] and
/// [`OrthographicProjection`].
///
/// [`Camera`]: crate::camera::Camera
pub trait CameraProjection {
/// Generate the projection matrix.
fn get_clip_from_view(&self) -> Mat4;
/// Generate the projection matrix for a [`SubCameraView`](super::SubCameraView).
fn get_clip_from_view_for_sub(&self, sub_view: &super::SubCameraView) -> Mat4;
/// When the area this camera renders to changes dimensions, this method will be automatically
/// called. Use this to update any projection properties that depend on the aspect ratio or
/// dimensions of the render area.
fn update(&mut self, width: f32, height: f32);
/// The far plane distance of the projection.
fn far(&self) -> f32;
/// The eight corners of the camera frustum, as defined by this projection.
///
/// The corners should be provided in the following order: first the bottom right, top right,
/// top left, bottom left for the near plane, then similar for the far plane.
// TODO: This seems somewhat redundant with `compute_frustum`, and similarly should be possible
// to compute with a default impl.
fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8];
/// Compute camera frustum for camera with given projection and transform.
///
/// This code is called by [`update_frusta`](crate::view::visibility::update_frusta) system
/// for each camera to update its frustum.
fn compute_frustum(&self, camera_transform: &GlobalTransform) -> Frustum {
let clip_from_world =
self.get_clip_from_view() * camera_transform.compute_matrix().inverse();
Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&camera_transform.translation(),
&camera_transform.back(),
self.far(),
)
}
}
mod sealed {
use super::CameraProjection;
/// A wrapper trait to make it possible to implement Clone for boxed [`super::CameraProjection`]
/// trait objects, without breaking object safety rules by making it `Sized`. Additional bounds
/// are included for downcasting, and fulfilling the trait bounds on `Projection`.
pub trait DynCameraProjection:
CameraProjection + core::fmt::Debug + Send + Sync + downcast_rs::Downcast
{
fn clone_box(&self) -> Box<dyn DynCameraProjection>;
}
downcast_rs::impl_downcast!(DynCameraProjection);
impl<T> DynCameraProjection for T
where
T: 'static + CameraProjection + core::fmt::Debug + Send + Sync + Clone,
{
fn clone_box(&self) -> Box<dyn DynCameraProjection> {
Box::new(self.clone())
}
}
}
/// Holds a dynamic [`CameraProjection`] trait object. Use [`Projection::custom()`] to construct a
/// custom projection.
///
/// The contained dynamic object can be downcast into a static type using [`CustomProjection::get`].
#[derive(Component, Debug, Reflect, Deref, DerefMut)]
#[reflect(Default, Clone)]
pub struct CustomProjection {
#[reflect(ignore)]
#[deref]
dyn_projection: Box<dyn sealed::DynCameraProjection>,
}
impl Default for CustomProjection {
fn default() -> Self {
Self {
dyn_projection: Box::new(PerspectiveProjection::default()),
}
}
}
impl Clone for CustomProjection {
fn clone(&self) -> Self {
Self {
dyn_projection: self.dyn_projection.clone_box(),
}
}
}
impl CustomProjection {
/// Returns a reference to the [`CameraProjection`] `P`.
///
/// Returns `None` if this dynamic object is not a projection of type `P`.
///
/// ```
/// # use bevy_render::prelude::{Projection, PerspectiveProjection};
/// // For simplicity's sake, use perspective as a custom projection:
/// let projection = Projection::custom(PerspectiveProjection::default());
/// let Projection::Custom(custom) = projection else { return };
///
/// // At this point the projection type is erased.
/// // We can use `get()` if we know what kind of projection we have.
/// let perspective = custom.get::<PerspectiveProjection>().unwrap();
///
/// assert_eq!(perspective.fov, PerspectiveProjection::default().fov);
/// ```
pub fn get<P>(&self) -> Option<&P>
where
P: CameraProjection + Debug + Send + Sync + Clone + 'static,
{
self.dyn_projection.downcast_ref()
}
/// Returns a mutable reference to the [`CameraProjection`] `P`.
///
/// Returns `None` if this dynamic object is not a projection of type `P`.
///
/// ```
/// # use bevy_render::prelude::{Projection, PerspectiveProjection};
/// // For simplicity's sake, use perspective as a custom projection:
/// let mut projection = Projection::custom(PerspectiveProjection::default());
/// let Projection::Custom(mut custom) = projection else { return };
///
/// // At this point the projection type is erased.
/// // We can use `get_mut()` if we know what kind of projection we have.
/// let perspective = custom.get_mut::<PerspectiveProjection>().unwrap();
///
/// assert_eq!(perspective.fov, PerspectiveProjection::default().fov);
/// perspective.fov = 1.0;
/// ```
pub fn get_mut<P>(&mut self) -> Option<&mut P>
where
P: CameraProjection + Debug + Send + Sync + Clone + 'static,
{
self.dyn_projection.downcast_mut()
}
}
/// Component that defines how to compute a [`Camera`]'s projection matrix.
///
/// Common projections, like perspective and orthographic, are provided out of the box to handle the
/// majority of use cases. Custom projections can be added using the [`CameraProjection`] trait and
/// the [`Projection::custom`] constructor.
///
/// ## What's a projection?
///
/// A camera projection essentially describes how 3d points from the point of view of a camera are
/// projected onto a 2d screen. This is where properties like a camera's field of view are defined.
/// More specifically, a projection is a 4x4 matrix that transforms points from view space (the
/// point of view of the camera) into clip space. Clip space is almost, but not quite, equivalent to
/// the rectangle that is rendered to your screen, with a depth axis. Any points that land outside
/// the bounds of this cuboid are "clipped" and not rendered.
///
/// You can also think of the projection as the thing that describes the shape of a camera's
/// frustum: the volume in 3d space that is visible to a camera.
///
/// [`Camera`]: crate::camera::Camera
#[derive(Component, Debug, Clone, Reflect, From)]
#[reflect(Component, Default, Debug, Clone)]
pub enum Projection {
Perspective(PerspectiveProjection),
Orthographic(OrthographicProjection),
Custom(CustomProjection),
}
impl Projection {
/// Construct a new custom camera projection from a type that implements [`CameraProjection`].
pub fn custom<P>(projection: P) -> Self
where
// Implementation note: pushing these trait bounds all the way out to this function makes
// errors nice for users. If a trait is missing, they will get a helpful error telling them
// that, say, the `Debug` implementation is missing. Wrapping these traits behind a super
// trait or some other indirection will make the errors harder to understand.
//
// For example, we don't use the `DynCameraProjection`` trait bound, because it is not the
// trait the user should be implementing - they only need to worry about implementing
// `CameraProjection`.
P: CameraProjection + Debug + Send + Sync + Clone + 'static,
{
Projection::Custom(CustomProjection {
dyn_projection: Box::new(projection),
})
}
}
impl CameraProjection for Projection {
fn get_clip_from_view(&self) -> Mat4 {
match self {
Projection::Perspective(projection) => projection.get_clip_from_view(),
Projection::Orthographic(projection) => projection.get_clip_from_view(),
Projection::Custom(projection) => projection.get_clip_from_view(),
}
}
fn get_clip_from_view_for_sub(&self, sub_view: &super::SubCameraView) -> Mat4 {
match self {
Projection::Perspective(projection) => projection.get_clip_from_view_for_sub(sub_view),
Projection::Orthographic(projection) => projection.get_clip_from_view_for_sub(sub_view),
Projection::Custom(projection) => projection.get_clip_from_view_for_sub(sub_view),
}
}
fn update(&mut self, width: f32, height: f32) {
match self {
Projection::Perspective(projection) => projection.update(width, height),
Projection::Orthographic(projection) => projection.update(width, height),
Projection::Custom(projection) => projection.update(width, height),
}
}
fn far(&self) -> f32 {
match self {
Projection::Perspective(projection) => projection.far(),
Projection::Orthographic(projection) => projection.far(),
Projection::Custom(projection) => projection.far(),
}
}
fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
match self {
Projection::Perspective(projection) => projection.get_frustum_corners(z_near, z_far),
Projection::Orthographic(projection) => projection.get_frustum_corners(z_near, z_far),
Projection::Custom(projection) => projection.get_frustum_corners(z_near, z_far),
}
}
}
impl Default for Projection {
fn default() -> Self {
Projection::Perspective(Default::default())
}
}
/// A 3D camera projection in which distant objects appear smaller than close objects.
#[derive(Debug, Clone, Reflect)]
#[reflect(Default, Debug, Clone)]
pub struct PerspectiveProjection {
/// The vertical field of view (FOV) in radians.
///
/// Defaults to a value of π/4 radians or 45 degrees.
pub fov: f32,
/// The aspect ratio (width divided by height) of the viewing frustum.
///
/// Bevy's [`camera_system`](crate::camera::camera_system) automatically
/// updates this value when the aspect ratio of the associated window changes.
///
/// Defaults to a value of `1.0`.
pub aspect_ratio: f32,
/// The distance from the camera in world units of the viewing frustum's near plane.
///
/// Objects closer to the camera than this value will not be visible.
///
/// Defaults to a value of `0.1`.
pub near: f32,
/// The distance from the camera in world units of the viewing frustum's far plane.
///
/// Objects farther from the camera than this value will not be visible.
///
/// Defaults to a value of `1000.0`.
pub far: f32,
}
impl CameraProjection for PerspectiveProjection {
fn get_clip_from_view(&self) -> Mat4 {
Mat4::perspective_infinite_reverse_rh(self.fov, self.aspect_ratio, self.near)
}
fn get_clip_from_view_for_sub(&self, sub_view: &super::SubCameraView) -> Mat4 {
let full_width = sub_view.full_size.x as f32;
let full_height = sub_view.full_size.y as f32;
let sub_width = sub_view.size.x as f32;
let sub_height = sub_view.size.y as f32;
let offset_x = sub_view.offset.x;
// Y-axis increases from top to bottom
let offset_y = full_height - (sub_view.offset.y + sub_height);
let full_aspect = full_width / full_height;
// Original frustum parameters
let top = self.near * ops::tan(0.5 * self.fov);
let bottom = -top;
let right = top * full_aspect;
let left = -right;
// Calculate scaling factors
let width = right - left;
let height = top - bottom;
// Calculate the new frustum parameters
let left_prime = left + (width * offset_x) / full_width;
let right_prime = left + (width * (offset_x + sub_width)) / full_width;
let bottom_prime = bottom + (height * offset_y) / full_height;
let top_prime = bottom + (height * (offset_y + sub_height)) / full_height;
// Compute the new projection matrix
let x = (2.0 * self.near) / (right_prime - left_prime);
let y = (2.0 * self.near) / (top_prime - bottom_prime);
let a = (right_prime + left_prime) / (right_prime - left_prime);
let b = (top_prime + bottom_prime) / (top_prime - bottom_prime);
Mat4::from_cols(
Vec4::new(x, 0.0, 0.0, 0.0),
Vec4::new(0.0, y, 0.0, 0.0),
Vec4::new(a, b, 0.0, -1.0),
Vec4::new(0.0, 0.0, self.near, 0.0),
)
}
fn update(&mut self, width: f32, height: f32) {
self.aspect_ratio = AspectRatio::try_new(width, height)
.expect("Failed to update PerspectiveProjection: width and height must be positive, non-zero values")
.ratio();
}
fn far(&self) -> f32 {
self.far
}
fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
let tan_half_fov = ops::tan(self.fov / 2.);
let a = z_near.abs() * tan_half_fov;
let b = z_far.abs() * tan_half_fov;
let aspect_ratio = self.aspect_ratio;
// NOTE: These vertices are in the specific order required by [`calculate_cascade`].
[
Vec3A::new(a * aspect_ratio, -a, z_near), // bottom right
Vec3A::new(a * aspect_ratio, a, z_near), // top right
Vec3A::new(-a * aspect_ratio, a, z_near), // top left
Vec3A::new(-a * aspect_ratio, -a, z_near), // bottom left
Vec3A::new(b * aspect_ratio, -b, z_far), // bottom right
Vec3A::new(b * aspect_ratio, b, z_far), // top right
Vec3A::new(-b * aspect_ratio, b, z_far), // top left
Vec3A::new(-b * aspect_ratio, -b, z_far), // bottom left
]
}
}
impl Default for PerspectiveProjection {
fn default() -> Self {
PerspectiveProjection {
fov: core::f32::consts::PI / 4.0,
near: 0.1,
far: 1000.0,
aspect_ratio: 1.0,
}
}
}
/// Scaling mode for [`OrthographicProjection`].
///
/// The effect of these scaling modes are combined with the [`OrthographicProjection::scale`] property.
///
/// For example, if the scaling mode is `ScalingMode::Fixed { width: 100.0, height: 300 }` and the scale is `2.0`,
/// the projection will be 200 world units wide and 600 world units tall.
///
/// # Examples
///
/// Configure the orthographic projection to two world units per window height:
///
/// ```
/// # use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
/// let projection = Projection::Orthographic(OrthographicProjection {
/// scaling_mode: ScalingMode::FixedVertical { viewport_height: 2.0 },
/// ..OrthographicProjection::default_2d()
/// });
/// ```
#[derive(Default, Debug, Clone, Copy, Reflect, Serialize, Deserialize)]
#[reflect(Serialize, Deserialize, Default, Clone)]
pub enum ScalingMode {
/// Match the viewport size.
///
/// With a scale of 1, lengths in world units will map 1:1 with the number of pixels used to render it.
/// For example, if we have a 64x64 sprite with a [`Transform::scale`](bevy_transform::prelude::Transform) of 1.0,
/// no custom size and no inherited scale, the sprite will be 64 world units wide and 64 world units tall.
/// When rendered with [`OrthographicProjection::scaling_mode`] set to `WindowSize` when the window scale factor is 1
/// the sprite will be rendered at 64 pixels wide and 64 pixels tall.
///
/// Changing any of these properties will multiplicatively affect the final size.
#[default]
WindowSize,
/// Manually specify the projection's size, ignoring window resizing. The image will stretch.
///
/// Arguments describe the area of the world that is shown (in world units).
Fixed { width: f32, height: f32 },
/// Keeping the aspect ratio while the axes can't be smaller than given minimum.
///
/// Arguments are in world units.
AutoMin { min_width: f32, min_height: f32 },
/// Keeping the aspect ratio while the axes can't be bigger than given maximum.
///
/// Arguments are in world units.
AutoMax { max_width: f32, max_height: f32 },
/// Keep the projection's height constant; width will be adjusted to match aspect ratio.
///
/// The argument is the desired height of the projection in world units.
FixedVertical { viewport_height: f32 },
/// Keep the projection's width constant; height will be adjusted to match aspect ratio.
///
/// The argument is the desired width of the projection in world units.
FixedHorizontal { viewport_width: f32 },
}
/// Project a 3D space onto a 2D surface using parallel lines, i.e., unlike [`PerspectiveProjection`],
/// the size of objects remains the same regardless of their distance to the camera.
///
/// The volume contained in the projection is called the *view frustum*. Since the viewport is rectangular
/// and projection lines are parallel, the view frustum takes the shape of a cuboid.
///
/// Note that the scale of the projection and the apparent size of objects are inversely proportional.
/// As the size of the projection increases, the size of objects decreases.
///
/// # Examples
///
/// Configure the orthographic projection to one world unit per 100 window pixels:
///
/// ```
/// # use bevy_render::camera::{OrthographicProjection, Projection, ScalingMode};
/// let projection = Projection::Orthographic(OrthographicProjection {
/// scaling_mode: ScalingMode::WindowSize,
/// scale: 0.01,
/// ..OrthographicProjection::default_2d()
/// });
/// ```
#[derive(Debug, Clone, Reflect)]
#[reflect(Debug, FromWorld, Clone)]
pub struct OrthographicProjection {
/// The distance of the near clipping plane in world units.
///
/// Objects closer than this will not be rendered.
///
/// Defaults to `0.0`
pub near: f32,
/// The distance of the far clipping plane in world units.
///
/// Objects further than this will not be rendered.
///
/// Defaults to `1000.0`
pub far: f32,
/// Specifies the origin of the viewport as a normalized position from 0 to 1, where (0, 0) is the bottom left
/// and (1, 1) is the top right. This determines where the camera's position sits inside the viewport.
///
/// When the projection scales due to viewport resizing, the position of the camera, and thereby `viewport_origin`,
/// remains at the same relative point.
///
/// Consequently, this is pivot point when scaling. With a bottom left pivot, the projection will expand
/// upwards and to the right. With a top right pivot, the projection will expand downwards and to the left.
/// Values in between will caused the projection to scale proportionally on each axis.
///
/// Defaults to `(0.5, 0.5)`, which makes scaling affect opposite sides equally, keeping the center
/// point of the viewport centered.
pub viewport_origin: Vec2,
/// How the projection will scale to the viewport.
///
/// Defaults to [`ScalingMode::WindowSize`],
/// and works in concert with [`OrthographicProjection::scale`] to determine the final effect.
///
/// For simplicity, zooming should be done by changing [`OrthographicProjection::scale`],
/// rather than changing the parameters of the scaling mode.
pub scaling_mode: ScalingMode,
/// Scales the projection.
///
/// As scale increases, the apparent size of objects decreases, and vice versa.
///
/// Note: scaling can be set by [`scaling_mode`](Self::scaling_mode) as well.
/// This parameter scales on top of that.
///
/// This property is particularly useful in implementing zoom functionality.
///
/// Defaults to `1.0`, which under standard settings corresponds to a 1:1 mapping of world units to rendered pixels.
/// See [`ScalingMode::WindowSize`] for more information.
pub scale: f32,
/// The area that the projection covers relative to `viewport_origin`.
///
/// Bevy's [`camera_system`](crate::camera::camera_system) automatically
/// updates this value when the viewport is resized depending on `OrthographicProjection`'s other fields.
/// In this case, `area` should not be manually modified.
///
/// It may be necessary to set this manually for shadow projections and such.
pub area: Rect,
}
impl CameraProjection for OrthographicProjection {
fn get_clip_from_view(&self) -> Mat4 {
Mat4::orthographic_rh(
self.area.min.x,
self.area.max.x,
self.area.min.y,
self.area.max.y,
// NOTE: near and far are swapped to invert the depth range from [0,1] to [1,0]
// This is for interoperability with pipelines using infinite reverse perspective projections.
self.far,
self.near,
)
}
fn get_clip_from_view_for_sub(&self, sub_view: &super::SubCameraView) -> Mat4 {
let full_width = sub_view.full_size.x as f32;
let full_height = sub_view.full_size.y as f32;
let offset_x = sub_view.offset.x;
let offset_y = sub_view.offset.y;
let sub_width = sub_view.size.x as f32;
let sub_height = sub_view.size.y as f32;
let full_aspect = full_width / full_height;
// Base the vertical size on self.area and adjust the horizontal size
let top = self.area.max.y;
let bottom = self.area.min.y;
let ortho_height = top - bottom;
let ortho_width = ortho_height * full_aspect;
// Center the orthographic area horizontally
let center_x = (self.area.max.x + self.area.min.x) / 2.0;
let left = center_x - ortho_width / 2.0;
let right = center_x + ortho_width / 2.0;
// Calculate scaling factors
let scale_w = (right - left) / full_width;
let scale_h = (top - bottom) / full_height;
// Calculate the new orthographic bounds
let left_prime = left + scale_w * offset_x;
let right_prime = left_prime + scale_w * sub_width;
let top_prime = top - scale_h * offset_y;
let bottom_prime = top_prime - scale_h * sub_height;
Mat4::orthographic_rh(
left_prime,
right_prime,
bottom_prime,
top_prime,
// NOTE: near and far are swapped to invert the depth range from [0,1] to [1,0]
// This is for interoperability with pipelines using infinite reverse perspective projections.
self.far,
self.near,
)
}
fn update(&mut self, width: f32, height: f32) {
let (projection_width, projection_height) = match self.scaling_mode {
ScalingMode::WindowSize => (width, height),
ScalingMode::AutoMin {
min_width,
min_height,
} => {
// Compare Pixels of current width and minimal height and Pixels of minimal width with current height.
// Then use bigger (min_height when true) as what it refers to (height when true) and calculate rest so it can't get under minimum.
if width * min_height > min_width * height {
(width * min_height / height, min_height)
} else {
(min_width, height * min_width / width)
}
}
ScalingMode::AutoMax {
max_width,
max_height,
} => {
// Compare Pixels of current width and maximal height and Pixels of maximal width with current height.
// Then use smaller (max_height when true) as what it refers to (height when true) and calculate rest so it can't get over maximum.
if width * max_height < max_width * height {
(width * max_height / height, max_height)
} else {
(max_width, height * max_width / width)
}
}
ScalingMode::FixedVertical { viewport_height } => {
(width * viewport_height / height, viewport_height)
}
ScalingMode::FixedHorizontal { viewport_width } => {
(viewport_width, height * viewport_width / width)
}
ScalingMode::Fixed { width, height } => (width, height),
};
let origin_x = projection_width * self.viewport_origin.x;
let origin_y = projection_height * self.viewport_origin.y;
self.area = Rect::new(
self.scale * -origin_x,
self.scale * -origin_y,
self.scale * (projection_width - origin_x),
self.scale * (projection_height - origin_y),
);
}
fn far(&self) -> f32 {
self.far
}
fn get_frustum_corners(&self, z_near: f32, z_far: f32) -> [Vec3A; 8] {
let area = self.area;
// NOTE: These vertices are in the specific order required by [`calculate_cascade`].
[
Vec3A::new(area.max.x, area.min.y, z_near), // bottom right
Vec3A::new(area.max.x, area.max.y, z_near), // top right
Vec3A::new(area.min.x, area.max.y, z_near), // top left
Vec3A::new(area.min.x, area.min.y, z_near), // bottom left
Vec3A::new(area.max.x, area.min.y, z_far), // bottom right
Vec3A::new(area.max.x, area.max.y, z_far), // top right
Vec3A::new(area.min.x, area.max.y, z_far), // top left
Vec3A::new(area.min.x, area.min.y, z_far), // bottom left
]
}
}
impl FromWorld for OrthographicProjection {
fn from_world(_world: &mut World) -> Self {
OrthographicProjection::default_3d()
}
}
impl OrthographicProjection {
/// Returns the default orthographic projection for a 2D context.
///
/// The near plane is set to a negative value so that the camera can still
/// render the scene when using positive z coordinates to order foreground elements.
pub fn default_2d() -> Self {
OrthographicProjection {
near: -1000.0,
..OrthographicProjection::default_3d()
}
}
/// Returns the default orthographic projection for a 3D context.
///
/// The near plane is set to 0.0 so that the camera doesn't render
/// objects that are behind it.
pub fn default_3d() -> Self {
OrthographicProjection {
scale: 1.0,
near: 0.0,
far: 1000.0,
viewport_origin: Vec2::new(0.5, 0.5),
scaling_mode: ScalingMode::WindowSize,
area: Rect::new(-1.0, -1.0, 1.0, 1.0),
}
}
}