1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
use crate::{
mesh::Mesh,
render_asset::RenderAssetUsages,
render_resource::{Extent3d, TextureDimension, TextureFormat},
texture::Image,
};
use bevy_app::{Plugin, PostUpdate};
use bevy_asset::Handle;
use bevy_ecs::prelude::*;
use bevy_hierarchy::Children;
use bevy_math::Vec3;
use bevy_reflect::prelude::*;
use bytemuck::{Pod, Zeroable};
use std::{iter, mem};
use thiserror::Error;
const MAX_TEXTURE_WIDTH: u32 = 2048;
// NOTE: "component" refers to the element count of math objects,
// Vec3 has 3 components, Mat2 has 4 components.
const MAX_COMPONENTS: u32 = MAX_TEXTURE_WIDTH * MAX_TEXTURE_WIDTH;
/// Max target count available for [morph targets](MorphWeights).
pub const MAX_MORPH_WEIGHTS: usize = 64;
/// [Inherit weights](inherit_weights) from glTF mesh parent entity to direct
/// bevy mesh child entities (ie: glTF primitive).
pub struct MorphPlugin;
impl Plugin for MorphPlugin {
fn build(&self, app: &mut bevy_app::App) {
app.register_type::<MorphWeights>()
.register_type::<MeshMorphWeights>()
.add_systems(PostUpdate, inherit_weights);
}
}
#[derive(Error, Clone, Debug)]
pub enum MorphBuildError {
#[error(
"Too many vertex×components in morph target, max is {MAX_COMPONENTS}, \
got {vertex_count}×{component_count} = {}",
*vertex_count * *component_count as usize
)]
TooManyAttributes {
vertex_count: usize,
component_count: u32,
},
#[error(
"Bevy only supports up to {} morph targets (individual poses), tried to \
create a model with {target_count} morph targets",
MAX_MORPH_WEIGHTS
)]
TooManyTargets { target_count: usize },
}
/// An image formatted for use with [`MorphWeights`] for rendering the morph target.
#[derive(Debug)]
pub struct MorphTargetImage(pub Image);
impl MorphTargetImage {
/// Generate textures for each morph target.
///
/// This accepts an "iterator of [`MorphAttributes`] iterators". Each item iterated in the top level
/// iterator corresponds "the attributes of a specific morph target".
///
/// Each pixel of the texture is a component of morph target animated
/// attributes. So a set of 9 pixels is this morph's displacement for
/// position, normal and tangents of a single vertex (each taking 3 pixels).
pub fn new(
targets: impl ExactSizeIterator<Item = impl Iterator<Item = MorphAttributes>>,
vertex_count: usize,
asset_usage: RenderAssetUsages,
) -> Result<Self, MorphBuildError> {
let max = MAX_TEXTURE_WIDTH;
let target_count = targets.len();
if target_count > MAX_MORPH_WEIGHTS {
return Err(MorphBuildError::TooManyTargets { target_count });
}
let component_count = (vertex_count * MorphAttributes::COMPONENT_COUNT) as u32;
let Some((Rect(width, height), padding)) = lowest_2d(component_count, max) else {
return Err(MorphBuildError::TooManyAttributes {
vertex_count,
component_count,
});
};
let data = targets
.flat_map(|mut attributes| {
let layer_byte_count = (padding + component_count) as usize * mem::size_of::<f32>();
let mut buffer = Vec::with_capacity(layer_byte_count);
for _ in 0..vertex_count {
let Some(to_add) = attributes.next() else {
break;
};
buffer.extend_from_slice(bytemuck::bytes_of(&to_add));
}
// Pad each layer so that they fit width * height
buffer.extend(iter::repeat(0).take(padding as usize * mem::size_of::<f32>()));
debug_assert_eq!(buffer.len(), layer_byte_count);
buffer
})
.collect();
let extents = Extent3d {
width,
height,
depth_or_array_layers: target_count as u32,
};
let image = Image::new(
extents,
TextureDimension::D3,
data,
TextureFormat::R32Float,
asset_usage,
);
Ok(MorphTargetImage(image))
}
}
/// Controls the [morph targets] for all child [`Handle<Mesh>`] entities. In most cases, [`MorphWeights`] should be considered
/// the "source of truth" when writing morph targets for meshes. However you can choose to write child [`MeshMorphWeights`]
/// if your situation requires more granularity. Just note that if you set [`MorphWeights`], it will overwrite child
/// [`MeshMorphWeights`] values.
///
/// This exists because Bevy's [`Mesh`] corresponds to a _single_ surface / material, whereas morph targets
/// as defined in the GLTF spec exist on "multi-primitive meshes" (where each primitive is its own surface with its own material).
/// Therefore in Bevy [`MorphWeights`] an a parent entity are the "canonical weights" from a GLTF perspective, which then
/// synchronized to child [`Handle<Mesh>`] / [`MeshMorphWeights`] (which correspond to "primitives" / "surfaces" from a GLTF perspective).
///
/// Add this to the parent of one or more [`Entities`](`Entity`) with a [`Handle<Mesh>`] with a [`MeshMorphWeights`].
///
/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
#[derive(Reflect, Default, Debug, Clone, Component)]
#[reflect(Debug, Component, Default)]
pub struct MorphWeights {
weights: Vec<f32>,
/// The first mesh primitive assigned to these weights
first_mesh: Option<Handle<Mesh>>,
}
impl MorphWeights {
pub fn new(
weights: Vec<f32>,
first_mesh: Option<Handle<Mesh>>,
) -> Result<Self, MorphBuildError> {
if weights.len() > MAX_MORPH_WEIGHTS {
let target_count = weights.len();
return Err(MorphBuildError::TooManyTargets { target_count });
}
Ok(MorphWeights {
weights,
first_mesh,
})
}
/// The first child [`Handle<Mesh>`] primitive controlled by these weights.
/// This can be used to look up metadata information such as [`Mesh::morph_target_names`].
pub fn first_mesh(&self) -> Option<&Handle<Mesh>> {
self.first_mesh.as_ref()
}
pub fn weights(&self) -> &[f32] {
&self.weights
}
pub fn weights_mut(&mut self) -> &mut [f32] {
&mut self.weights
}
}
/// Control a specific [`Mesh`] instance's [morph targets]. These control the weights of
/// specific "mesh primitives" in scene formats like GLTF. They can be set manually, but
/// in most cases they should "automatically" synced by setting the [`MorphWeights`] component
/// on a parent entity.
///
/// See [`MorphWeights`] for more details on Bevy's morph target implementation.
///
/// Add this to an [`Entity`] with a [`Handle<Mesh>`] with a [`MorphAttributes`] set
/// to control individual weights of each morph target.
///
/// [morph targets]: https://en.wikipedia.org/wiki/Morph_target_animation
#[derive(Reflect, Default, Debug, Clone, Component)]
#[reflect(Debug, Component, Default)]
pub struct MeshMorphWeights {
weights: Vec<f32>,
}
impl MeshMorphWeights {
pub fn new(weights: Vec<f32>) -> Result<Self, MorphBuildError> {
if weights.len() > MAX_MORPH_WEIGHTS {
let target_count = weights.len();
return Err(MorphBuildError::TooManyTargets { target_count });
}
Ok(MeshMorphWeights { weights })
}
pub fn weights(&self) -> &[f32] {
&self.weights
}
pub fn weights_mut(&mut self) -> &mut [f32] {
&mut self.weights
}
}
/// Bevy meshes are gltf primitives, [`MorphWeights`] on the bevy node entity
/// should be inherited by children meshes.
///
/// Only direct children are updated, to fulfill the expectations of glTF spec.
pub fn inherit_weights(
morph_nodes: Query<(&Children, &MorphWeights), (Without<Handle<Mesh>>, Changed<MorphWeights>)>,
mut morph_primitives: Query<&mut MeshMorphWeights, With<Handle<Mesh>>>,
) {
for (children, parent_weights) in &morph_nodes {
let mut iter = morph_primitives.iter_many_mut(children);
while let Some(mut child_weight) = iter.fetch_next() {
child_weight.weights.clear();
child_weight.weights.extend(&parent_weights.weights);
}
}
}
/// Attributes **differences** used for morph targets.
///
/// See [`MorphTargetImage`] for more information.
#[derive(Copy, Clone, PartialEq, Pod, Zeroable, Default)]
#[repr(C)]
pub struct MorphAttributes {
/// The vertex position difference between base mesh and this target.
pub position: Vec3,
/// The vertex normal difference between base mesh and this target.
pub normal: Vec3,
/// The vertex tangent difference between base mesh and this target.
///
/// Note that tangents are a `Vec4`, but only the `xyz` components are
/// animated, as the `w` component is the sign and cannot be animated.
pub tangent: Vec3,
}
impl From<[Vec3; 3]> for MorphAttributes {
fn from([position, normal, tangent]: [Vec3; 3]) -> Self {
MorphAttributes {
position,
normal,
tangent,
}
}
}
impl MorphAttributes {
/// How many components `MorphAttributes` has.
///
/// Each `Vec3` has 3 components, we have 3 `Vec3`, for a total of 9.
pub const COMPONENT_COUNT: usize = 9;
pub fn new(position: Vec3, normal: Vec3, tangent: Vec3) -> Self {
MorphAttributes {
position,
normal,
tangent,
}
}
}
/// Integer division rounded up.
const fn div_ceil(lhf: u32, rhs: u32) -> u32 {
(lhf + rhs - 1) / rhs
}
struct Rect(u32, u32);
/// Find the smallest rectangle of maximum edge size `max_edge` that contains
/// at least `min_includes` cells. `u32` is how many extra cells the rectangle
/// has.
///
/// The following rectangle contains 27 cells, and its longest edge is 9:
/// ```text
/// ----------------------------
/// |1 |2 |3 |4 |5 |6 |7 |8 |9 |
/// ----------------------------
/// |2 | | | | | | | | |
/// ----------------------------
/// |3 | | | | | | | | |
/// ----------------------------
/// ```
///
/// Returns `None` if `max_edge` is too small to build a rectangle
/// containing `min_includes` cells.
fn lowest_2d(min_includes: u32, max_edge: u32) -> Option<(Rect, u32)> {
(1..=max_edge)
.filter_map(|a| {
let b = div_ceil(min_includes, a);
let diff = (a * b).checked_sub(min_includes)?;
Some((Rect(a, b), diff))
})
.filter_map(|(rect, diff)| (rect.1 <= max_edge).then_some((rect, diff)))
.min_by_key(|(_, diff)| *diff)
}