1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
use crate::{
    mesh::{Indices, Mesh, MeshBuilder, Meshable},
    render_asset::RenderAssetUsages,
};
use bevy_math::{primitives::ConicalFrustum, Vec3};
use wgpu::PrimitiveTopology;

/// A builder used for creating a [`Mesh`] with a [`ConicalFrustum`] shape.
#[derive(Clone, Copy, Debug)]
pub struct ConicalFrustumMeshBuilder {
    /// The [`ConicalFrustum`] shape.
    pub frustum: ConicalFrustum,
    /// The number of vertices used for the top and bottom of the conical frustum.
    ///
    /// The default is `32`.
    pub resolution: u32,
    /// The number of horizontal lines subdividing the lateral surface of the conical frustum.
    ///
    /// The default is `1`.
    pub segments: u32,
}

impl Default for ConicalFrustumMeshBuilder {
    fn default() -> Self {
        Self {
            frustum: ConicalFrustum::default(),
            resolution: 32,
            segments: 1,
        }
    }
}

impl ConicalFrustumMeshBuilder {
    /// Creates a new [`ConicalFrustumMeshBuilder`] from the given top and bottom radii, a height,
    /// and a resolution used for the top and bottom.
    #[inline]
    pub const fn new(radius_top: f32, radius_bottom: f32, height: f32, resolution: u32) -> Self {
        Self {
            frustum: ConicalFrustum {
                radius_top,
                radius_bottom,
                height,
            },
            resolution,
            segments: 1,
        }
    }

    /// Sets the number of vertices used for the top and bottom of the conical frustum.
    #[inline]
    pub const fn resolution(mut self, resolution: u32) -> Self {
        self.resolution = resolution;
        self
    }

    /// Sets the number of horizontal lines subdividing the lateral surface of the conical frustum.
    #[inline]
    pub const fn segments(mut self, segments: u32) -> Self {
        self.segments = segments;
        self
    }
}

impl MeshBuilder for ConicalFrustumMeshBuilder {
    fn build(&self) -> Mesh {
        debug_assert!(self.resolution > 2);
        debug_assert!(self.segments > 0);

        let ConicalFrustum {
            radius_top,
            radius_bottom,
            height,
        } = self.frustum;
        let half_height = height / 2.0;

        let num_rings = self.segments + 1;
        let num_vertices = (self.resolution * 2 + num_rings * (self.resolution + 1)) as usize;
        let num_faces = self.resolution * (num_rings - 2);
        let num_indices = ((2 * num_faces + 2 * (self.resolution - 1) * 2) * 3) as usize;

        let mut positions = Vec::with_capacity(num_vertices);
        let mut normals = Vec::with_capacity(num_vertices);
        let mut uvs = Vec::with_capacity(num_vertices);
        let mut indices = Vec::with_capacity(num_indices);

        let step_theta = std::f32::consts::TAU / self.resolution as f32;
        let step_y = height / self.segments as f32;
        let step_radius = (radius_top - radius_bottom) / self.segments as f32;

        // Rings
        for ring in 0..num_rings {
            let y = -half_height + ring as f32 * step_y;
            let radius = radius_bottom + ring as f32 * step_radius;

            for segment in 0..=self.resolution {
                let theta = segment as f32 * step_theta;
                let (sin, cos) = theta.sin_cos();

                positions.push([radius * cos, y, radius * sin]);
                normals.push(
                    Vec3::new(cos, (radius_bottom - radius_top) / height, sin)
                        .normalize()
                        .to_array(),
                );
                uvs.push([
                    segment as f32 / self.resolution as f32,
                    ring as f32 / self.segments as f32,
                ]);
            }
        }

        // Lateral surface
        for i in 0..self.segments {
            let ring = i * (self.resolution + 1);
            let next_ring = (i + 1) * (self.resolution + 1);

            for j in 0..self.resolution {
                indices.extend_from_slice(&[
                    ring + j,
                    next_ring + j,
                    ring + j + 1,
                    next_ring + j,
                    next_ring + j + 1,
                    ring + j + 1,
                ]);
            }
        }

        // Caps
        let mut build_cap = |top: bool, radius: f32| {
            let offset = positions.len() as u32;
            let (y, normal_y, winding) = if top {
                (half_height, 1.0, (1, 0))
            } else {
                (-half_height, -1.0, (0, 1))
            };

            for i in 0..self.resolution {
                let theta = i as f32 * step_theta;
                let (sin, cos) = theta.sin_cos();

                positions.push([cos * radius, y, sin * radius]);
                normals.push([0.0, normal_y, 0.0]);
                uvs.push([0.5 * (cos + 1.0), 1.0 - 0.5 * (sin + 1.0)]);
            }

            for i in 1..(self.resolution - 1) {
                indices.extend_from_slice(&[
                    offset,
                    offset + i + winding.0,
                    offset + i + winding.1,
                ]);
            }
        };

        build_cap(true, radius_top);
        build_cap(false, radius_bottom);

        Mesh::new(
            PrimitiveTopology::TriangleList,
            RenderAssetUsages::default(),
        )
        .with_inserted_indices(Indices::U32(indices))
        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, positions)
        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
    }
}

impl Meshable for ConicalFrustum {
    type Output = ConicalFrustumMeshBuilder;

    fn mesh(&self) -> Self::Output {
        ConicalFrustumMeshBuilder {
            frustum: *self,
            ..Default::default()
        }
    }
}

impl From<ConicalFrustum> for Mesh {
    fn from(frustum: ConicalFrustum) -> Self {
        frustum.mesh().build()
    }
}