1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
use std::f32::consts::PI;

use crate::{
    mesh::{Indices, Mesh, MeshBuilder, Meshable},
    render_asset::RenderAssetUsages,
};
use bevy_math::primitives::Sphere;
use hexasphere::shapes::IcoSphere;
use thiserror::Error;
use wgpu::PrimitiveTopology;

/// An error when creating an icosphere [`Mesh`] from a [`SphereMeshBuilder`].
#[derive(Clone, Copy, Debug, Error)]
pub enum IcosphereError {
    /// The icosphere has too many vertices.
    #[error("Cannot create an icosphere of {subdivisions} subdivisions due to there being too many vertices being generated: {number_of_resulting_points}. (Limited to 65535 vertices or 79 subdivisions)")]
    TooManyVertices {
        /// The number of subdivisions used. 79 is the largest allowed value for a mesh to be generated.
        subdivisions: usize,
        /// The number of vertices generated. 65535 is the largest allowed value for a mesh to be generated.
        number_of_resulting_points: usize,
    },
}

/// A type of sphere mesh.
#[derive(Clone, Copy, Debug)]
pub enum SphereKind {
    /// An icosphere, a spherical mesh that consists of similar sized triangles.
    Ico {
        /// The number of subdivisions applied.
        /// The number of faces quadruples with each subdivision.
        subdivisions: usize,
    },
    /// A UV sphere, a spherical mesh that consists of quadrilaterals
    /// apart from triangles at the top and bottom.
    Uv {
        /// The number of longitudinal sectors, aka the horizontal resolution.
        #[doc(alias = "horizontal_resolution")]
        sectors: usize,
        /// The number of latitudinal stacks, aka the vertical resolution.
        #[doc(alias = "vertical_resolution")]
        stacks: usize,
    },
}

impl Default for SphereKind {
    fn default() -> Self {
        Self::Ico { subdivisions: 5 }
    }
}

/// A builder used for creating a [`Mesh`] with an [`Sphere`] shape.
#[derive(Clone, Copy, Debug, Default)]
pub struct SphereMeshBuilder {
    /// The [`Sphere`] shape.
    pub sphere: Sphere,
    /// The type of sphere mesh that will be built.
    pub kind: SphereKind,
}

impl SphereMeshBuilder {
    /// Creates a new [`SphereMeshBuilder`] from a radius and [`SphereKind`].
    #[inline]
    pub const fn new(radius: f32, kind: SphereKind) -> Self {
        Self {
            sphere: Sphere { radius },
            kind,
        }
    }

    /// Sets the [`SphereKind`] that will be used for building the mesh.
    #[inline]
    pub const fn kind(mut self, kind: SphereKind) -> Self {
        self.kind = kind;
        self
    }

    /// Creates an icosphere mesh with the given number of subdivisions.
    ///
    /// The number of faces quadruples with each subdivision.
    /// If there are `80` or more subdivisions, the vertex count will be too large,
    /// and an [`IcosphereError`] is returned.
    ///
    /// A good default is `5` subdivisions.
    pub fn ico(&self, subdivisions: usize) -> Result<Mesh, IcosphereError> {
        if subdivisions >= 80 {
            /*
            Number of triangles:
            N = 20

            Number of edges:
            E = 30

            Number of vertices:
            V = 12

            Number of points within a triangle (triangular numbers):
            inner(s) = (s^2 + s) / 2

            Number of points on an edge:
            edges(s) = s

            Add up all vertices on the surface:
            vertices(s) = edges(s) * E + inner(s - 1) * N + V

            Expand and simplify. Notice that the triangular number formula has roots at -1, and 0, so translating it one to the right fixes it.
            subdivisions(s) = 30s + 20((s^2 - 2s + 1 + s - 1) / 2) + 12
            subdivisions(s) = 30s + 10s^2 - 10s + 12
            subdivisions(s) = 10(s^2 + 2s) + 12

            Factor an (s + 1) term to simplify in terms of calculation
            subdivisions(s) = 10(s + 1)^2 + 12 - 10
            resulting_vertices(s) = 10(s + 1)^2 + 2
            */
            let temp = subdivisions + 1;
            let number_of_resulting_points = temp * temp * 10 + 2;
            return Err(IcosphereError::TooManyVertices {
                subdivisions,
                number_of_resulting_points,
            });
        }
        let generated = IcoSphere::new(subdivisions, |point| {
            let inclination = point.y.acos();
            let azimuth = point.z.atan2(point.x);

            let norm_inclination = inclination / std::f32::consts::PI;
            let norm_azimuth = 0.5 - (azimuth / std::f32::consts::TAU);

            [norm_azimuth, norm_inclination]
        });

        let raw_points = generated.raw_points();

        let points = raw_points
            .iter()
            .map(|&p| (p * self.sphere.radius).into())
            .collect::<Vec<[f32; 3]>>();

        let normals = raw_points
            .iter()
            .copied()
            .map(Into::into)
            .collect::<Vec<[f32; 3]>>();

        let uvs = generated.raw_data().to_owned();

        let mut indices = Vec::with_capacity(generated.indices_per_main_triangle() * 20);

        for i in 0..20 {
            generated.get_indices(i, &mut indices);
        }

        let indices = Indices::U32(indices);

        Ok(Mesh::new(
            PrimitiveTopology::TriangleList,
            RenderAssetUsages::default(),
        )
        .with_inserted_indices(indices)
        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, points)
        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs))
    }

    /// Creates a UV sphere [`Mesh`] with the given number of
    /// longitudinal sectors and latitudinal stacks, aka horizontal and vertical resolution.
    ///
    /// A good default is `32` sectors and `18` stacks.
    pub fn uv(&self, sectors: usize, stacks: usize) -> Mesh {
        // Largely inspired from http://www.songho.ca/opengl/gl_sphere.html

        let sectors_f32 = sectors as f32;
        let stacks_f32 = stacks as f32;
        let length_inv = 1. / self.sphere.radius;
        let sector_step = 2. * PI / sectors_f32;
        let stack_step = PI / stacks_f32;

        let mut vertices: Vec<[f32; 3]> = Vec::with_capacity(stacks * sectors);
        let mut normals: Vec<[f32; 3]> = Vec::with_capacity(stacks * sectors);
        let mut uvs: Vec<[f32; 2]> = Vec::with_capacity(stacks * sectors);
        let mut indices: Vec<u32> = Vec::with_capacity(stacks * sectors * 2 * 3);

        for i in 0..stacks + 1 {
            let stack_angle = PI / 2. - (i as f32) * stack_step;
            let xy = self.sphere.radius * stack_angle.cos();
            let z = self.sphere.radius * stack_angle.sin();

            for j in 0..sectors + 1 {
                let sector_angle = (j as f32) * sector_step;
                let x = xy * sector_angle.cos();
                let y = xy * sector_angle.sin();

                vertices.push([x, y, z]);
                normals.push([x * length_inv, y * length_inv, z * length_inv]);
                uvs.push([(j as f32) / sectors_f32, (i as f32) / stacks_f32]);
            }
        }

        // indices
        //  k1--k1+1
        //  |  / |
        //  | /  |
        //  k2--k2+1
        for i in 0..stacks {
            let mut k1 = i * (sectors + 1);
            let mut k2 = k1 + sectors + 1;
            for _j in 0..sectors {
                if i != 0 {
                    indices.push(k1 as u32);
                    indices.push(k2 as u32);
                    indices.push((k1 + 1) as u32);
                }
                if i != stacks - 1 {
                    indices.push((k1 + 1) as u32);
                    indices.push(k2 as u32);
                    indices.push((k2 + 1) as u32);
                }
                k1 += 1;
                k2 += 1;
            }
        }

        Mesh::new(
            PrimitiveTopology::TriangleList,
            RenderAssetUsages::default(),
        )
        .with_inserted_indices(Indices::U32(indices))
        .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vertices)
        .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
        .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
    }
}

impl MeshBuilder for SphereMeshBuilder {
    /// Builds a [`Mesh`] according to the configuration in `self`.
    ///
    /// # Panics
    ///
    /// Panics if the sphere is a [`SphereKind::Ico`] with a subdivision count
    /// that is greater than or equal to `80` because there will be too many vertices.
    fn build(&self) -> Mesh {
        match self.kind {
            SphereKind::Ico { subdivisions } => self.ico(subdivisions).unwrap(),
            SphereKind::Uv { sectors, stacks } => self.uv(sectors, stacks),
        }
    }
}

impl Meshable for Sphere {
    type Output = SphereMeshBuilder;

    fn mesh(&self) -> Self::Output {
        SphereMeshBuilder {
            sphere: *self,
            ..Default::default()
        }
    }
}

impl From<Sphere> for Mesh {
    fn from(sphere: Sphere) -> Self {
        sphere.mesh().build()
    }
}