1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
use crate::{ExtractSchedule, MainWorld, Render, RenderApp, RenderSet};
use bevy_app::{App, Plugin, SubApp};
use bevy_asset::{Asset, AssetEvent, AssetId, Assets};
use bevy_ecs::{
    prelude::{Commands, EventReader, IntoSystemConfigs, ResMut, Resource},
    schedule::SystemConfigs,
    system::{StaticSystemParam, SystemParam, SystemParamItem, SystemState},
    world::{FromWorld, Mut},
};
use bevy_reflect::{Reflect, ReflectDeserialize, ReflectSerialize};
use bevy_render_macros::ExtractResource;
use bevy_utils::{tracing::debug, HashMap, HashSet};
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use thiserror::Error;

#[derive(Debug, Error)]
pub enum PrepareAssetError<E: Send + Sync + 'static> {
    #[error("Failed to prepare asset")]
    RetryNextUpdate(E),
}

/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`ExtractSchedule`] step the [`RenderAsset::SourceAsset`] is transferred
/// from the "main world" into the "render world".
///
/// After that in the [`RenderSet::PrepareAssets`] step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset`].
pub trait RenderAsset: Send + Sync + 'static + Sized {
    /// The representation of the asset in the "main world".
    type SourceAsset: Asset + Clone;

    /// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
    ///
    /// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
    type Param: SystemParam;

    /// Whether or not to unload the asset after extracting it to the render world.
    #[inline]
    fn asset_usage(_source_asset: &Self::SourceAsset) -> RenderAssetUsages {
        RenderAssetUsages::default()
    }

    /// Size of the data the asset will upload to the gpu. Specifying a return value
    /// will allow the asset to be throttled via [`RenderAssetBytesPerFrame`].
    #[inline]
    #[allow(unused_variables)]
    fn byte_len(source_asset: &Self::SourceAsset) -> Option<usize> {
        None
    }

    /// Prepares the [`RenderAsset::SourceAsset`] for the GPU by transforming it into a [`RenderAsset`].
    ///
    /// ECS data may be accessed via `param`.
    fn prepare_asset(
        source_asset: Self::SourceAsset,
        param: &mut SystemParamItem<Self::Param>,
    ) -> Result<Self, PrepareAssetError<Self::SourceAsset>>;
}

bitflags::bitflags! {
    /// Defines where the asset will be used.
    ///
    /// If an asset is set to the `RENDER_WORLD` but not the `MAIN_WORLD`, the asset will be
    /// unloaded from the asset server once it's been extracted and prepared in the render world.
    ///
    /// Unloading the asset saves on memory, as for most cases it is no longer necessary to keep
    /// it in RAM once it's been uploaded to the GPU's VRAM. However, this means you can no longer
    /// access the asset from the CPU (via the `Assets<T>` resource) once unloaded (without re-loading it).
    ///
    /// If you never need access to the asset from the CPU past the first frame it's loaded on,
    /// or only need very infrequent access, then set this to `RENDER_WORLD`. Otherwise, set this to
    /// `RENDER_WORLD | MAIN_WORLD`.
    ///
    /// If you have an asset that doesn't actually need to end up in the render world, like an Image
    /// that will be decoded into another Image asset, use `MAIN_WORLD` only.
    ///
    /// ## Platform-specific
    ///
    /// On Wasm, it is not possible for now to free reserved memory. To control memory usage, load assets
    /// in sequence and unload one before loading the next. See this
    /// [discussion about memory management](https://github.com/WebAssembly/design/issues/1397) for more
    /// details.
    #[repr(transparent)]
    #[derive(Serialize, Deserialize, Hash, Clone, Copy, PartialEq, Eq, Debug, Reflect)]
    #[reflect_value(Serialize, Deserialize, Hash, PartialEq, Debug)]
    pub struct RenderAssetUsages: u8 {
        const MAIN_WORLD = 1 << 0;
        const RENDER_WORLD = 1 << 1;
    }
}

impl Default for RenderAssetUsages {
    /// Returns the default render asset usage flags:
    /// `RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD`
    ///
    /// This default configuration ensures the asset persists in the main world, even after being prepared for rendering.
    ///
    /// If your asset does not change, consider using `RenderAssetUsages::RENDER_WORLD` exclusively. This will cause
    /// the asset to be unloaded from the main world once it has been prepared for rendering. If the asset does not need
    /// to reach the render world at all, use `RenderAssetUsages::MAIN_WORLD` exclusively.
    fn default() -> Self {
        RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD
    }
}

/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`ExtractSchedule`] and
/// [`RenderSet::PrepareAssets`] steps for the specified [`RenderAsset`].
///
/// The `AFTER` generic parameter can be used to specify that `A::prepare_asset` should not be run until
/// `prepare_assets::<AFTER>` has completed. This allows the `prepare_asset` function to depend on another
/// prepared [`RenderAsset`], for example `Mesh::prepare_asset` relies on `RenderAssets::<GpuImage>` for morph
/// targets, so the plugin is created as `RenderAssetPlugin::<GpuMesh, GpuImage>::default()`.
pub struct RenderAssetPlugin<A: RenderAsset, AFTER: RenderAssetDependency + 'static = ()> {
    phantom: PhantomData<fn() -> (A, AFTER)>,
}

impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Default
    for RenderAssetPlugin<A, AFTER>
{
    fn default() -> Self {
        Self {
            phantom: Default::default(),
        }
    }
}

impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Plugin
    for RenderAssetPlugin<A, AFTER>
{
    fn build(&self, app: &mut App) {
        app.init_resource::<CachedExtractRenderAssetSystemState<A>>();
        if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app
                .init_resource::<ExtractedAssets<A>>()
                .init_resource::<RenderAssets<A>>()
                .init_resource::<PrepareNextFrameAssets<A>>()
                .add_systems(ExtractSchedule, extract_render_asset::<A>);
            AFTER::register_system(
                render_app,
                prepare_assets::<A>.in_set(RenderSet::PrepareAssets),
            );
        }
    }
}

// helper to allow specifying dependencies between render assets
pub trait RenderAssetDependency {
    fn register_system(render_app: &mut SubApp, system: SystemConfigs);
}

impl RenderAssetDependency for () {
    fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
        render_app.add_systems(Render, system);
    }
}

impl<A: RenderAsset> RenderAssetDependency for A {
    fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
        render_app.add_systems(Render, system.after(prepare_assets::<A>));
    }
}

/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
    extracted: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
    removed: HashSet<AssetId<A::SourceAsset>>,
    added: HashSet<AssetId<A::SourceAsset>>,
}

impl<A: RenderAsset> Default for ExtractedAssets<A> {
    fn default() -> Self {
        Self {
            extracted: Default::default(),
            removed: Default::default(),
            added: Default::default(),
        }
    }
}

/// Stores all GPU representations ([`RenderAsset`])
/// of [`RenderAsset::SourceAsset`] as long as they exist.
#[derive(Resource)]
pub struct RenderAssets<A: RenderAsset>(HashMap<AssetId<A::SourceAsset>, A>);

impl<A: RenderAsset> Default for RenderAssets<A> {
    fn default() -> Self {
        Self(Default::default())
    }
}

impl<A: RenderAsset> RenderAssets<A> {
    pub fn get(&self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&A> {
        self.0.get(&id.into())
    }

    pub fn get_mut(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&mut A> {
        self.0.get_mut(&id.into())
    }

    pub fn insert(&mut self, id: impl Into<AssetId<A::SourceAsset>>, value: A) -> Option<A> {
        self.0.insert(id.into(), value)
    }

    pub fn remove(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<A> {
        self.0.remove(&id.into())
    }

    pub fn iter(&self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &A)> {
        self.0.iter().map(|(k, v)| (*k, v))
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &mut A)> {
        self.0.iter_mut().map(|(k, v)| (*k, v))
    }
}

#[derive(Resource)]
struct CachedExtractRenderAssetSystemState<A: RenderAsset> {
    state: SystemState<(
        EventReader<'static, 'static, AssetEvent<A::SourceAsset>>,
        ResMut<'static, Assets<A::SourceAsset>>,
    )>,
}

impl<A: RenderAsset> FromWorld for CachedExtractRenderAssetSystemState<A> {
    fn from_world(world: &mut bevy_ecs::world::World) -> Self {
        Self {
            state: SystemState::new(world),
        }
    }
}

/// This system extracts all created or modified assets of the corresponding [`RenderAsset::SourceAsset`] type
/// into the "render world".
fn extract_render_asset<A: RenderAsset>(mut commands: Commands, mut main_world: ResMut<MainWorld>) {
    main_world.resource_scope(
        |world, mut cached_state: Mut<CachedExtractRenderAssetSystemState<A>>| {
            let (mut events, mut assets) = cached_state.state.get_mut(world);

            let mut changed_assets = HashSet::default();
            let mut removed = HashSet::default();

            for event in events.read() {
                #[allow(clippy::match_same_arms)]
                match event {
                    AssetEvent::Added { id } | AssetEvent::Modified { id } => {
                        changed_assets.insert(*id);
                    }
                    AssetEvent::Removed { .. } => {}
                    AssetEvent::Unused { id } => {
                        changed_assets.remove(id);
                        removed.insert(*id);
                    }
                    AssetEvent::LoadedWithDependencies { .. } => {
                        // TODO: handle this
                    }
                }
            }

            let mut extracted_assets = Vec::new();
            let mut added = HashSet::new();
            for id in changed_assets.drain() {
                if let Some(asset) = assets.get(id) {
                    let asset_usage = A::asset_usage(asset);
                    if asset_usage.contains(RenderAssetUsages::RENDER_WORLD) {
                        if asset_usage == RenderAssetUsages::RENDER_WORLD {
                            if let Some(asset) = assets.remove(id) {
                                extracted_assets.push((id, asset));
                                added.insert(id);
                            }
                        } else {
                            extracted_assets.push((id, asset.clone()));
                            added.insert(id);
                        }
                    }
                }
            }

            commands.insert_resource(ExtractedAssets::<A> {
                extracted: extracted_assets,
                removed,
                added,
            });
            cached_state.state.apply(world);
        },
    );
}

// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
    assets: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
}

impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
    fn default() -> Self {
        Self {
            assets: Default::default(),
        }
    }
}

/// This system prepares all assets of the corresponding [`RenderAsset::SourceAsset`] type
/// which where extracted this frame for the GPU.
pub fn prepare_assets<A: RenderAsset>(
    mut extracted_assets: ResMut<ExtractedAssets<A>>,
    mut render_assets: ResMut<RenderAssets<A>>,
    mut prepare_next_frame: ResMut<PrepareNextFrameAssets<A>>,
    param: StaticSystemParam<<A as RenderAsset>::Param>,
    mut bpf: ResMut<RenderAssetBytesPerFrame>,
) {
    let mut wrote_asset_count = 0;

    let mut param = param.into_inner();
    let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
    for (id, extracted_asset) in queued_assets {
        if extracted_assets.removed.contains(&id) || extracted_assets.added.contains(&id) {
            // skip previous frame's assets that have been removed or updated
            continue;
        }

        let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
            // we could check if available bytes > byte_len here, but we want to make some
            // forward progress even if the asset is larger than the max bytes per frame.
            // this way we always write at least one (sized) asset per frame.
            // in future we could also consider partial asset uploads.
            if bpf.exhausted() {
                prepare_next_frame.assets.push((id, extracted_asset));
                continue;
            }
            size
        } else {
            0
        };

        match A::prepare_asset(extracted_asset, &mut param) {
            Ok(prepared_asset) => {
                render_assets.insert(id, prepared_asset);
                bpf.write_bytes(write_bytes);
                wrote_asset_count += 1;
            }
            Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
                prepare_next_frame.assets.push((id, extracted_asset));
            }
        }
    }

    for removed in extracted_assets.removed.drain() {
        render_assets.remove(removed);
    }

    for (id, extracted_asset) in extracted_assets.extracted.drain(..) {
        // we remove previous here to ensure that if we are updating the asset then
        // any users will not see the old asset after a new asset is extracted,
        // even if the new asset is not yet ready or we are out of bytes to write.
        render_assets.remove(id);

        let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
            if bpf.exhausted() {
                prepare_next_frame.assets.push((id, extracted_asset));
                continue;
            }
            size
        } else {
            0
        };

        match A::prepare_asset(extracted_asset, &mut param) {
            Ok(prepared_asset) => {
                render_assets.insert(id, prepared_asset);
                bpf.write_bytes(write_bytes);
                wrote_asset_count += 1;
            }
            Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
                prepare_next_frame.assets.push((id, extracted_asset));
            }
        }
    }

    if bpf.exhausted() && !prepare_next_frame.assets.is_empty() {
        debug!(
            "{} write budget exhausted with {} assets remaining (wrote {})",
            std::any::type_name::<A>(),
            prepare_next_frame.assets.len(),
            wrote_asset_count
        );
    }
}

/// A resource that attempts to limit the amount of data transferred from cpu to gpu
/// each frame, preventing choppy frames at the cost of waiting longer for gpu assets
/// to become available
#[derive(Resource, Default, Debug, Clone, Copy, ExtractResource)]
pub struct RenderAssetBytesPerFrame {
    pub max_bytes: Option<usize>,
    pub available: usize,
}

impl RenderAssetBytesPerFrame {
    /// `max_bytes`: the number of bytes to write per frame.
    /// this is a soft limit: only full assets are written currently, uploading stops
    /// after the first asset that exceeds the limit.
    /// To participate, assets should implement [`RenderAsset::byte_len`]. If the default
    /// is not overridden, the assets are assumed to be small enough to upload without restriction.
    pub fn new(max_bytes: usize) -> Self {
        Self {
            max_bytes: Some(max_bytes),
            available: 0,
        }
    }

    /// Reset the available bytes. Called once per frame by the [`crate::RenderPlugin`].
    pub fn reset(&mut self) {
        self.available = self.max_bytes.unwrap_or(usize::MAX);
    }

    /// check how many bytes are available since the last reset
    pub fn available_bytes(&self, required_bytes: usize) -> usize {
        if self.max_bytes.is_none() {
            return required_bytes;
        }

        required_bytes.min(self.available)
    }

    /// decrease the available bytes for the current frame
    fn write_bytes(&mut self, bytes: usize) {
        if self.max_bytes.is_none() {
            return;
        }

        let write_bytes = bytes.min(self.available);
        self.available -= write_bytes;
    }

    // check if any bytes remain available for writing this frame
    fn exhausted(&self) -> bool {
        self.max_bytes.is_some() && self.available == 0
    }
}