1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
use crate::{ExtractSchedule, MainWorld, Render, RenderApp, RenderSet};
use bevy_app::{App, Plugin, SubApp};
use bevy_asset::{Asset, AssetEvent, AssetId, Assets};
use bevy_ecs::{
prelude::{Commands, EventReader, IntoSystemConfigs, ResMut, Resource},
schedule::SystemConfigs,
system::{StaticSystemParam, SystemParam, SystemParamItem, SystemState},
world::{FromWorld, Mut},
};
use bevy_reflect::{Reflect, ReflectDeserialize, ReflectSerialize};
use bevy_render_macros::ExtractResource;
use bevy_utils::{tracing::debug, HashMap, HashSet};
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use thiserror::Error;
#[derive(Debug, Error)]
pub enum PrepareAssetError<E: Send + Sync + 'static> {
#[error("Failed to prepare asset")]
RetryNextUpdate(E),
}
/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`ExtractSchedule`] step the [`RenderAsset::SourceAsset`] is transferred
/// from the "main world" into the "render world".
///
/// After that in the [`RenderSet::PrepareAssets`] step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset`].
pub trait RenderAsset: Send + Sync + 'static + Sized {
/// The representation of the asset in the "main world".
type SourceAsset: Asset + Clone;
/// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
///
/// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
type Param: SystemParam;
/// Whether or not to unload the asset after extracting it to the render world.
#[inline]
fn asset_usage(_source_asset: &Self::SourceAsset) -> RenderAssetUsages {
RenderAssetUsages::default()
}
/// Size of the data the asset will upload to the gpu. Specifying a return value
/// will allow the asset to be throttled via [`RenderAssetBytesPerFrame`].
#[inline]
#[allow(unused_variables)]
fn byte_len(source_asset: &Self::SourceAsset) -> Option<usize> {
None
}
/// Prepares the [`RenderAsset::SourceAsset`] for the GPU by transforming it into a [`RenderAsset`].
///
/// ECS data may be accessed via `param`.
fn prepare_asset(
source_asset: Self::SourceAsset,
param: &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>>;
}
bitflags::bitflags! {
/// Defines where the asset will be used.
///
/// If an asset is set to the `RENDER_WORLD` but not the `MAIN_WORLD`, the asset will be
/// unloaded from the asset server once it's been extracted and prepared in the render world.
///
/// Unloading the asset saves on memory, as for most cases it is no longer necessary to keep
/// it in RAM once it's been uploaded to the GPU's VRAM. However, this means you can no longer
/// access the asset from the CPU (via the `Assets<T>` resource) once unloaded (without re-loading it).
///
/// If you never need access to the asset from the CPU past the first frame it's loaded on,
/// or only need very infrequent access, then set this to `RENDER_WORLD`. Otherwise, set this to
/// `RENDER_WORLD | MAIN_WORLD`.
///
/// If you have an asset that doesn't actually need to end up in the render world, like an Image
/// that will be decoded into another Image asset, use `MAIN_WORLD` only.
///
/// ## Platform-specific
///
/// On Wasm, it is not possible for now to free reserved memory. To control memory usage, load assets
/// in sequence and unload one before loading the next. See this
/// [discussion about memory management](https://github.com/WebAssembly/design/issues/1397) for more
/// details.
#[repr(transparent)]
#[derive(Serialize, Deserialize, Hash, Clone, Copy, PartialEq, Eq, Debug, Reflect)]
#[reflect_value(Serialize, Deserialize, Hash, PartialEq, Debug)]
pub struct RenderAssetUsages: u8 {
const MAIN_WORLD = 1 << 0;
const RENDER_WORLD = 1 << 1;
}
}
impl Default for RenderAssetUsages {
/// Returns the default render asset usage flags:
/// `RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD`
///
/// This default configuration ensures the asset persists in the main world, even after being prepared for rendering.
///
/// If your asset does not change, consider using `RenderAssetUsages::RENDER_WORLD` exclusively. This will cause
/// the asset to be unloaded from the main world once it has been prepared for rendering. If the asset does not need
/// to reach the render world at all, use `RenderAssetUsages::MAIN_WORLD` exclusively.
fn default() -> Self {
RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD
}
}
/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`ExtractSchedule`] and
/// [`RenderSet::PrepareAssets`] steps for the specified [`RenderAsset`].
///
/// The `AFTER` generic parameter can be used to specify that `A::prepare_asset` should not be run until
/// `prepare_assets::<AFTER>` has completed. This allows the `prepare_asset` function to depend on another
/// prepared [`RenderAsset`], for example `Mesh::prepare_asset` relies on `RenderAssets::<GpuImage>` for morph
/// targets, so the plugin is created as `RenderAssetPlugin::<GpuMesh, GpuImage>::default()`.
pub struct RenderAssetPlugin<A: RenderAsset, AFTER: RenderAssetDependency + 'static = ()> {
phantom: PhantomData<fn() -> (A, AFTER)>,
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Default
for RenderAssetPlugin<A, AFTER>
{
fn default() -> Self {
Self {
phantom: Default::default(),
}
}
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Plugin
for RenderAssetPlugin<A, AFTER>
{
fn build(&self, app: &mut App) {
app.init_resource::<CachedExtractRenderAssetSystemState<A>>();
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ExtractedAssets<A>>()
.init_resource::<RenderAssets<A>>()
.init_resource::<PrepareNextFrameAssets<A>>()
.add_systems(ExtractSchedule, extract_render_asset::<A>);
AFTER::register_system(
render_app,
prepare_assets::<A>.in_set(RenderSet::PrepareAssets),
);
}
}
}
// helper to allow specifying dependencies between render assets
pub trait RenderAssetDependency {
fn register_system(render_app: &mut SubApp, system: SystemConfigs);
}
impl RenderAssetDependency for () {
fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
render_app.add_systems(Render, system);
}
}
impl<A: RenderAsset> RenderAssetDependency for A {
fn register_system(render_app: &mut SubApp, system: SystemConfigs) {
render_app.add_systems(Render, system.after(prepare_assets::<A>));
}
}
/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
extracted: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
removed: HashSet<AssetId<A::SourceAsset>>,
added: HashSet<AssetId<A::SourceAsset>>,
}
impl<A: RenderAsset> Default for ExtractedAssets<A> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
added: Default::default(),
}
}
}
/// Stores all GPU representations ([`RenderAsset`])
/// of [`RenderAsset::SourceAsset`] as long as they exist.
#[derive(Resource)]
pub struct RenderAssets<A: RenderAsset>(HashMap<AssetId<A::SourceAsset>, A>);
impl<A: RenderAsset> Default for RenderAssets<A> {
fn default() -> Self {
Self(Default::default())
}
}
impl<A: RenderAsset> RenderAssets<A> {
pub fn get(&self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&A> {
self.0.get(&id.into())
}
pub fn get_mut(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<&mut A> {
self.0.get_mut(&id.into())
}
pub fn insert(&mut self, id: impl Into<AssetId<A::SourceAsset>>, value: A) -> Option<A> {
self.0.insert(id.into(), value)
}
pub fn remove(&mut self, id: impl Into<AssetId<A::SourceAsset>>) -> Option<A> {
self.0.remove(&id.into())
}
pub fn iter(&self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &A)> {
self.0.iter().map(|(k, v)| (*k, v))
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = (AssetId<A::SourceAsset>, &mut A)> {
self.0.iter_mut().map(|(k, v)| (*k, v))
}
}
#[derive(Resource)]
struct CachedExtractRenderAssetSystemState<A: RenderAsset> {
state: SystemState<(
EventReader<'static, 'static, AssetEvent<A::SourceAsset>>,
ResMut<'static, Assets<A::SourceAsset>>,
)>,
}
impl<A: RenderAsset> FromWorld for CachedExtractRenderAssetSystemState<A> {
fn from_world(world: &mut bevy_ecs::world::World) -> Self {
Self {
state: SystemState::new(world),
}
}
}
/// This system extracts all created or modified assets of the corresponding [`RenderAsset::SourceAsset`] type
/// into the "render world".
fn extract_render_asset<A: RenderAsset>(mut commands: Commands, mut main_world: ResMut<MainWorld>) {
main_world.resource_scope(
|world, mut cached_state: Mut<CachedExtractRenderAssetSystemState<A>>| {
let (mut events, mut assets) = cached_state.state.get_mut(world);
let mut changed_assets = HashSet::default();
let mut removed = HashSet::default();
for event in events.read() {
#[allow(clippy::match_same_arms)]
match event {
AssetEvent::Added { id } | AssetEvent::Modified { id } => {
changed_assets.insert(*id);
}
AssetEvent::Removed { .. } => {}
AssetEvent::Unused { id } => {
changed_assets.remove(id);
removed.insert(*id);
}
AssetEvent::LoadedWithDependencies { .. } => {
// TODO: handle this
}
}
}
let mut extracted_assets = Vec::new();
let mut added = HashSet::new();
for id in changed_assets.drain() {
if let Some(asset) = assets.get(id) {
let asset_usage = A::asset_usage(asset);
if asset_usage.contains(RenderAssetUsages::RENDER_WORLD) {
if asset_usage == RenderAssetUsages::RENDER_WORLD {
if let Some(asset) = assets.remove(id) {
extracted_assets.push((id, asset));
added.insert(id);
}
} else {
extracted_assets.push((id, asset.clone()));
added.insert(id);
}
}
}
}
commands.insert_resource(ExtractedAssets::<A> {
extracted: extracted_assets,
removed,
added,
});
cached_state.state.apply(world);
},
);
}
// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
assets: Vec<(AssetId<A::SourceAsset>, A::SourceAsset)>,
}
impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`RenderAsset::SourceAsset`] type
/// which where extracted this frame for the GPU.
pub fn prepare_assets<A: RenderAsset>(
mut extracted_assets: ResMut<ExtractedAssets<A>>,
mut render_assets: ResMut<RenderAssets<A>>,
mut prepare_next_frame: ResMut<PrepareNextFrameAssets<A>>,
param: StaticSystemParam<<A as RenderAsset>::Param>,
mut bpf: ResMut<RenderAssetBytesPerFrame>,
) {
let mut wrote_asset_count = 0;
let mut param = param.into_inner();
let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
for (id, extracted_asset) in queued_assets {
if extracted_assets.removed.contains(&id) || extracted_assets.added.contains(&id) {
// skip previous frame's assets that have been removed or updated
continue;
}
let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
// we could check if available bytes > byte_len here, but we want to make some
// forward progress even if the asset is larger than the max bytes per frame.
// this way we always write at least one (sized) asset per frame.
// in future we could also consider partial asset uploads.
if bpf.exhausted() {
prepare_next_frame.assets.push((id, extracted_asset));
continue;
}
size
} else {
0
};
match A::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
bpf.write_bytes(write_bytes);
wrote_asset_count += 1;
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
}
}
for removed in extracted_assets.removed.drain() {
render_assets.remove(removed);
}
for (id, extracted_asset) in extracted_assets.extracted.drain(..) {
// we remove previous here to ensure that if we are updating the asset then
// any users will not see the old asset after a new asset is extracted,
// even if the new asset is not yet ready or we are out of bytes to write.
render_assets.remove(id);
let write_bytes = if let Some(size) = A::byte_len(&extracted_asset) {
if bpf.exhausted() {
prepare_next_frame.assets.push((id, extracted_asset));
continue;
}
size
} else {
0
};
match A::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
bpf.write_bytes(write_bytes);
wrote_asset_count += 1;
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
}
}
if bpf.exhausted() && !prepare_next_frame.assets.is_empty() {
debug!(
"{} write budget exhausted with {} assets remaining (wrote {})",
std::any::type_name::<A>(),
prepare_next_frame.assets.len(),
wrote_asset_count
);
}
}
/// A resource that attempts to limit the amount of data transferred from cpu to gpu
/// each frame, preventing choppy frames at the cost of waiting longer for gpu assets
/// to become available
#[derive(Resource, Default, Debug, Clone, Copy, ExtractResource)]
pub struct RenderAssetBytesPerFrame {
pub max_bytes: Option<usize>,
pub available: usize,
}
impl RenderAssetBytesPerFrame {
/// `max_bytes`: the number of bytes to write per frame.
/// this is a soft limit: only full assets are written currently, uploading stops
/// after the first asset that exceeds the limit.
/// To participate, assets should implement [`RenderAsset::byte_len`]. If the default
/// is not overridden, the assets are assumed to be small enough to upload without restriction.
pub fn new(max_bytes: usize) -> Self {
Self {
max_bytes: Some(max_bytes),
available: 0,
}
}
/// Reset the available bytes. Called once per frame by the [`crate::RenderPlugin`].
pub fn reset(&mut self) {
self.available = self.max_bytes.unwrap_or(usize::MAX);
}
/// check how many bytes are available since the last reset
pub fn available_bytes(&self, required_bytes: usize) -> usize {
if self.max_bytes.is_none() {
return required_bytes;
}
required_bytes.min(self.available)
}
/// decrease the available bytes for the current frame
fn write_bytes(&mut self, bytes: usize) {
if self.max_bytes.is_none() {
return;
}
let write_bytes = bytes.min(self.available);
self.available -= write_bytes;
}
// check if any bytes remain available for writing this frame
fn exhausted(&self) -> bool {
self.max_bytes.is_some() && self.available == 0
}
}