1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
//! The modular rendering abstraction responsible for queuing, preparing, sorting and drawing
//! entities as part of separate render phases.
//!
//! In Bevy each view (camera, or shadow-casting light, etc.) has one or multiple render phases
//! (e.g. opaque, transparent, shadow, etc).
//! They are used to queue entities for rendering.
//! Multiple phases might be required due to different sorting/batching behaviors
//! (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
//! the rendered texture of the previous phase (e.g. for screen-space reflections).
//!
//! To draw an entity, a corresponding [`PhaseItem`] has to be added to one or multiple of these
//! render phases for each view that it is visible in.
//! This must be done in the [`RenderSet::Queue`].
//! After that the render phase sorts them in the [`RenderSet::PhaseSort`].
//! Finally the items are rendered using a single [`TrackedRenderPass`], during
//! the [`RenderSet::Render`].
//!
//! Therefore each phase item is assigned a [`Draw`] function.
//! These set up the state of the [`TrackedRenderPass`] (i.e. select the
//! [`RenderPipeline`](crate::render_resource::RenderPipeline), configure the
//! [`BindGroup`](crate::render_resource::BindGroup)s, etc.) and then issue a draw call,
//! for the corresponding item.
//!
//! The [`Draw`] function trait can either be implemented directly or such a function can be
//! created by composing multiple [`RenderCommand`]s.

mod draw;
mod draw_state;
mod rangefinder;

use bevy_app::{App, Plugin};
use bevy_derive::{Deref, DerefMut};
use bevy_utils::{default, hashbrown::hash_map::Entry, HashMap};
pub use draw::*;
pub use draw_state::*;
use encase::{internal::WriteInto, ShaderSize};
use nonmax::NonMaxU32;
pub use rangefinder::*;

use crate::{
    batching::{
        self,
        gpu_preprocessing::{self, BatchedInstanceBuffers},
        no_gpu_preprocessing::{self, BatchedInstanceBuffer},
        GetFullBatchData,
    },
    render_resource::{CachedRenderPipelineId, GpuArrayBufferIndex, PipelineCache},
    Render, RenderApp, RenderSet,
};
use bevy_ecs::{
    entity::EntityHashMap,
    prelude::*,
    system::{lifetimeless::SRes, SystemParamItem},
};
use smallvec::SmallVec;
use std::{
    fmt::{self, Debug, Formatter},
    hash::Hash,
    iter,
    marker::PhantomData,
    ops::Range,
    slice::SliceIndex,
};

/// Stores the rendering instructions for a single phase that uses bins in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewBinnedRenderPhases<BPI>(pub EntityHashMap<BinnedRenderPhase<BPI>>)
where
    BPI: BinnedPhaseItem;

/// A collection of all rendering instructions, that will be executed by the GPU, for a
/// single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used for phases in which the ordering is less
/// critical: for example, `Opaque3d`. It's generally faster than the
/// alternative [`SortedRenderPhase`].
pub struct BinnedRenderPhase<BPI>
where
    BPI: BinnedPhaseItem,
{
    /// A list of `BinKey`s for batchable items.
    ///
    /// These are accumulated in `queue_material_meshes` and then sorted in
    /// `batch_and_prepare_binned_render_phase`.
    pub batchable_mesh_keys: Vec<BPI::BinKey>,

    /// The batchable bins themselves.
    ///
    /// Each bin corresponds to a single batch set. For unbatchable entities,
    /// prefer `unbatchable_values` instead.
    pub(crate) batchable_mesh_values: HashMap<BPI::BinKey, Vec<Entity>>,

    /// A list of `BinKey`s for unbatchable items.
    ///
    /// These are accumulated in `queue_material_meshes` and then sorted in
    /// `batch_and_prepare_binned_render_phase`.
    pub unbatchable_mesh_keys: Vec<BPI::BinKey>,

    /// The unbatchable bins.
    ///
    /// Each entity here is rendered in a separate drawcall.
    pub(crate) unbatchable_mesh_values: HashMap<BPI::BinKey, UnbatchableBinnedEntities>,

    /// Items in the bin that aren't meshes at all.
    ///
    /// Bevy itself doesn't place anything in this list, but plugins or your app
    /// can in order to execute custom drawing commands. Draw functions for each
    /// entity are simply called in order at rendering time.
    ///
    /// See the `custom_phase_item` example for an example of how to use this.
    pub non_mesh_items: Vec<(BPI::BinKey, Entity)>,

    /// Information on each batch set.
    ///
    /// A *batch set* is a set of entities that will be batched together unless
    /// we're on a platform that doesn't support storage buffers (e.g. WebGL 2)
    /// and differing dynamic uniform indices force us to break batches. On
    /// platforms that support storage buffers, a batch set always consists of
    /// at most one batch.
    ///
    /// The unbatchable entities immediately follow the batches in the storage
    /// buffers.
    pub(crate) batch_sets: Vec<SmallVec<[BinnedRenderPhaseBatch; 1]>>,
}

/// Information about a single batch of entities rendered using binned phase
/// items.
#[derive(Debug)]
pub struct BinnedRenderPhaseBatch {
    /// An entity that's *representative* of this batch.
    ///
    /// Bevy uses this to fetch the mesh. It can be any entity in the batch.
    pub representative_entity: Entity,

    /// The range of instance indices in this batch.
    pub instance_range: Range<u32>,

    /// The dynamic offset of the batch.
    ///
    /// Note that dynamic offsets are only used on platforms that don't support
    /// storage buffers.
    pub extra_index: PhaseItemExtraIndex,
}

/// Information about the unbatchable entities in a bin.
pub(crate) struct UnbatchableBinnedEntities {
    /// The entities.
    pub(crate) entities: Vec<Entity>,

    /// The GPU array buffer indices of each unbatchable binned entity.
    pub(crate) buffer_indices: UnbatchableBinnedEntityIndexSet,
}

/// Stores instance indices and dynamic offsets for unbatchable entities in a
/// binned render phase.
///
/// This is conceptually `Vec<UnbatchableBinnedEntityDynamicOffset>`, but it
/// avoids the overhead of storing dynamic offsets on platforms that support
/// them. In other words, this allows a fast path that avoids allocation on
/// platforms that aren't WebGL 2.
#[derive(Default)]

pub(crate) enum UnbatchableBinnedEntityIndexSet {
    /// There are no unbatchable entities in this bin (yet).
    #[default]
    NoEntities,

    /// The instances for all unbatchable entities in this bin are contiguous,
    /// and there are no dynamic uniforms.
    ///
    /// This is the typical case on platforms other than WebGL 2. We special
    /// case this to avoid allocation on those platforms.
    Sparse {
        /// The range of indices.
        instance_range: Range<u32>,
        /// The index of the first indirect instance parameters.
        ///
        /// The other indices immediately follow these.
        first_indirect_parameters_index: Option<NonMaxU32>,
    },

    /// Dynamic uniforms are present for unbatchable entities in this bin.
    ///
    /// We fall back to this on WebGL 2.
    Dense(Vec<UnbatchableBinnedEntityIndices>),
}

/// The instance index and dynamic offset (if present) for an unbatchable entity.
///
/// This is only useful on platforms that don't support storage buffers.
#[derive(Clone, Copy)]
pub(crate) struct UnbatchableBinnedEntityIndices {
    /// The instance index.
    pub(crate) instance_index: u32,
    /// The [`PhaseItemExtraIndex`], if present.
    pub(crate) extra_index: PhaseItemExtraIndex,
}

/// Identifies the list within [`BinnedRenderPhase`] that a phase item is to be
/// placed in.
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum BinnedRenderPhaseType {
    /// The item is a mesh that's eligible for indirect rendering and can be
    /// batched with other meshes of the same type.
    BatchableMesh,

    /// The item is a mesh that's eligible for indirect rendering, but can't be
    /// batched with other meshes of the same type.
    ///
    /// At the moment, this is used for skinned meshes.
    UnbatchableMesh,

    /// The item isn't a mesh at all.
    ///
    /// Bevy will simply invoke the drawing commands for such items one after
    /// another, with no further processing.
    ///
    /// The engine itself doesn't enqueue any items of this type, but it's
    /// available for use in your application and/or plugins.
    NonMesh,
}

impl<T> From<GpuArrayBufferIndex<T>> for UnbatchableBinnedEntityIndices
where
    T: Clone + ShaderSize + WriteInto,
{
    fn from(value: GpuArrayBufferIndex<T>) -> Self {
        UnbatchableBinnedEntityIndices {
            instance_index: value.index,
            extra_index: PhaseItemExtraIndex::maybe_dynamic_offset(value.dynamic_offset),
        }
    }
}

impl<BPI> Default for ViewBinnedRenderPhases<BPI>
where
    BPI: BinnedPhaseItem,
{
    fn default() -> Self {
        Self(default())
    }
}

impl<BPI> ViewBinnedRenderPhases<BPI>
where
    BPI: BinnedPhaseItem,
{
    pub fn insert_or_clear(&mut self, entity: Entity) {
        match self.entry(entity) {
            Entry::Occupied(mut entry) => entry.get_mut().clear(),
            Entry::Vacant(entry) => {
                entry.insert(default());
            }
        }
    }
}

impl<BPI> BinnedRenderPhase<BPI>
where
    BPI: BinnedPhaseItem,
{
    /// Bins a new entity.
    ///
    /// The `phase_type` parameter specifies whether the entity is a
    /// preprocessable mesh and whether it can be binned with meshes of the same
    /// type.
    pub fn add(&mut self, key: BPI::BinKey, entity: Entity, phase_type: BinnedRenderPhaseType) {
        match phase_type {
            BinnedRenderPhaseType::BatchableMesh => {
                match self.batchable_mesh_values.entry(key.clone()) {
                    Entry::Occupied(mut entry) => entry.get_mut().push(entity),
                    Entry::Vacant(entry) => {
                        self.batchable_mesh_keys.push(key);
                        entry.insert(vec![entity]);
                    }
                }
            }

            BinnedRenderPhaseType::UnbatchableMesh => {
                match self.unbatchable_mesh_values.entry(key.clone()) {
                    Entry::Occupied(mut entry) => entry.get_mut().entities.push(entity),
                    Entry::Vacant(entry) => {
                        self.unbatchable_mesh_keys.push(key);
                        entry.insert(UnbatchableBinnedEntities {
                            entities: vec![entity],
                            buffer_indices: default(),
                        });
                    }
                }
            }

            BinnedRenderPhaseType::NonMesh => {
                // We don't process these items further.
                self.non_mesh_items.push((key, entity));
            }
        }
    }

    /// Encodes the GPU commands needed to render all entities in this phase.
    pub fn render<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
    ) {
        {
            let draw_functions = world.resource::<DrawFunctions<BPI>>();
            let mut draw_functions = draw_functions.write();
            draw_functions.prepare(world);
            // Make sure to drop the reader-writer lock here to avoid recursive
            // locks.
        }

        self.render_batchable_meshes(render_pass, world, view);
        self.render_unbatchable_meshes(render_pass, world, view);
        self.render_non_meshes(render_pass, world, view);
    }

    /// Renders all batchable meshes queued in this phase.
    fn render_batchable_meshes<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
    ) {
        let draw_functions = world.resource::<DrawFunctions<BPI>>();
        let mut draw_functions = draw_functions.write();

        debug_assert_eq!(self.batchable_mesh_keys.len(), self.batch_sets.len());

        for (key, batch_set) in self.batchable_mesh_keys.iter().zip(self.batch_sets.iter()) {
            for batch in batch_set {
                let binned_phase_item = BPI::new(
                    key.clone(),
                    batch.representative_entity,
                    batch.instance_range.clone(),
                    batch.extra_index,
                );

                // Fetch the draw function.
                let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
                else {
                    continue;
                };

                draw_function.draw(world, render_pass, view, &binned_phase_item);
            }
        }
    }

    /// Renders all unbatchable meshes queued in this phase.
    fn render_unbatchable_meshes<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
    ) {
        let draw_functions = world.resource::<DrawFunctions<BPI>>();
        let mut draw_functions = draw_functions.write();

        for key in &self.unbatchable_mesh_keys {
            let unbatchable_entities = &self.unbatchable_mesh_values[key];
            for (entity_index, &entity) in unbatchable_entities.entities.iter().enumerate() {
                let unbatchable_dynamic_offset = match &unbatchable_entities.buffer_indices {
                    UnbatchableBinnedEntityIndexSet::NoEntities => {
                        // Shouldn't happen…
                        continue;
                    }
                    UnbatchableBinnedEntityIndexSet::Sparse {
                        instance_range,
                        first_indirect_parameters_index,
                    } => UnbatchableBinnedEntityIndices {
                        instance_index: instance_range.start + entity_index as u32,
                        extra_index: match first_indirect_parameters_index {
                            None => PhaseItemExtraIndex::NONE,
                            Some(first_indirect_parameters_index) => {
                                PhaseItemExtraIndex::indirect_parameters_index(
                                    u32::from(*first_indirect_parameters_index)
                                        + entity_index as u32,
                                )
                            }
                        },
                    },
                    UnbatchableBinnedEntityIndexSet::Dense(ref dynamic_offsets) => {
                        dynamic_offsets[entity_index]
                    }
                };

                let binned_phase_item = BPI::new(
                    key.clone(),
                    entity,
                    unbatchable_dynamic_offset.instance_index
                        ..(unbatchable_dynamic_offset.instance_index + 1),
                    unbatchable_dynamic_offset.extra_index,
                );

                // Fetch the draw function.
                let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
                else {
                    continue;
                };

                draw_function.draw(world, render_pass, view, &binned_phase_item);
            }
        }
    }

    /// Renders all objects of type [`BinnedRenderPhaseType::NonMesh`].
    ///
    /// These will have been added by plugins or the application.
    fn render_non_meshes<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
    ) {
        let draw_functions = world.resource::<DrawFunctions<BPI>>();
        let mut draw_functions = draw_functions.write();

        for &(ref key, entity) in &self.non_mesh_items {
            // Come up with a fake batch range and extra index. The draw
            // function is expected to manage any sort of batching logic itself.
            let binned_phase_item = BPI::new(key.clone(), entity, 0..1, PhaseItemExtraIndex(0));

            let Some(draw_function) = draw_functions.get_mut(binned_phase_item.draw_function())
            else {
                continue;
            };

            draw_function.draw(world, render_pass, view, &binned_phase_item);
        }
    }

    pub fn is_empty(&self) -> bool {
        self.batchable_mesh_keys.is_empty()
            && self.unbatchable_mesh_keys.is_empty()
            && self.non_mesh_items.is_empty()
    }

    pub fn clear(&mut self) {
        self.batchable_mesh_keys.clear();
        self.batchable_mesh_values.clear();
        self.unbatchable_mesh_keys.clear();
        self.unbatchable_mesh_values.clear();
        self.non_mesh_items.clear();
        self.batch_sets.clear();
    }
}

impl<BPI> Default for BinnedRenderPhase<BPI>
where
    BPI: BinnedPhaseItem,
{
    fn default() -> Self {
        Self {
            batchable_mesh_keys: vec![],
            batchable_mesh_values: HashMap::default(),
            unbatchable_mesh_keys: vec![],
            unbatchable_mesh_values: HashMap::default(),
            non_mesh_items: vec![],
            batch_sets: vec![],
        }
    }
}

impl UnbatchableBinnedEntityIndexSet {
    /// Returns the [`UnbatchableBinnedEntityIndices`] for the given entity.
    fn indices_for_entity_index(
        &self,
        entity_index: u32,
    ) -> Option<UnbatchableBinnedEntityIndices> {
        match self {
            UnbatchableBinnedEntityIndexSet::NoEntities => None,
            UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. }
                if entity_index >= instance_range.len() as u32 =>
            {
                None
            }
            UnbatchableBinnedEntityIndexSet::Sparse {
                instance_range,
                first_indirect_parameters_index: None,
            } => Some(UnbatchableBinnedEntityIndices {
                instance_index: instance_range.start + entity_index,
                extra_index: PhaseItemExtraIndex::NONE,
            }),
            UnbatchableBinnedEntityIndexSet::Sparse {
                instance_range,
                first_indirect_parameters_index: Some(first_indirect_parameters_index),
            } => Some(UnbatchableBinnedEntityIndices {
                instance_index: instance_range.start + entity_index,
                extra_index: PhaseItemExtraIndex::indirect_parameters_index(
                    u32::from(*first_indirect_parameters_index) + entity_index,
                ),
            }),
            UnbatchableBinnedEntityIndexSet::Dense(ref indices) => {
                indices.get(entity_index as usize).copied()
            }
        }
    }
}

/// A convenient abstraction for adding all the systems necessary for a binned
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct BinnedRenderPhasePlugin<BPI, GFBD>(PhantomData<(BPI, GFBD)>)
where
    BPI: BinnedPhaseItem,
    GFBD: GetFullBatchData;

impl<BPI, GFBD> Default for BinnedRenderPhasePlugin<BPI, GFBD>
where
    BPI: BinnedPhaseItem,
    GFBD: GetFullBatchData,
{
    fn default() -> Self {
        Self(PhantomData)
    }
}

impl<BPI, GFBD> Plugin for BinnedRenderPhasePlugin<BPI, GFBD>
where
    BPI: BinnedPhaseItem,
    GFBD: GetFullBatchData + Sync + Send + 'static,
{
    fn build(&self, app: &mut App) {
        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app
            .init_resource::<ViewBinnedRenderPhases<BPI>>()
            .add_systems(
                Render,
                (
                    batching::sort_binned_render_phase::<BPI>.in_set(RenderSet::PhaseSort),
                    (
                        no_gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
                            .run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
                        gpu_preprocessing::batch_and_prepare_binned_render_phase::<BPI, GFBD>
                            .run_if(
                                resource_exists::<
                                    BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
                                >,
                            ),
                    )
                        .in_set(RenderSet::PrepareResources),
                ),
            );
    }
}

/// Stores the rendering instructions for a single phase that sorts items in all
/// views.
///
/// They're cleared out every frame, but storing them in a resource like this
/// allows us to reuse allocations.
#[derive(Resource, Deref, DerefMut)]
pub struct ViewSortedRenderPhases<SPI>(pub EntityHashMap<SortedRenderPhase<SPI>>)
where
    SPI: SortedPhaseItem;

impl<SPI> Default for ViewSortedRenderPhases<SPI>
where
    SPI: SortedPhaseItem,
{
    fn default() -> Self {
        Self(default())
    }
}

impl<SPI> ViewSortedRenderPhases<SPI>
where
    SPI: SortedPhaseItem,
{
    pub fn insert_or_clear(&mut self, entity: Entity) {
        match self.entry(entity) {
            Entry::Occupied(mut entry) => entry.get_mut().clear(),
            Entry::Vacant(entry) => {
                entry.insert(default());
            }
        }
    }
}

/// A convenient abstraction for adding all the systems necessary for a sorted
/// render phase to the render app.
///
/// This is the version used when the pipeline supports GPU preprocessing: e.g.
/// 3D PBR meshes.
pub struct SortedRenderPhasePlugin<SPI, GFBD>(PhantomData<(SPI, GFBD)>)
where
    SPI: SortedPhaseItem,
    GFBD: GetFullBatchData;

impl<SPI, GFBD> Default for SortedRenderPhasePlugin<SPI, GFBD>
where
    SPI: SortedPhaseItem,
    GFBD: GetFullBatchData,
{
    fn default() -> Self {
        Self(PhantomData)
    }
}

impl<SPI, GFBD> Plugin for SortedRenderPhasePlugin<SPI, GFBD>
where
    SPI: SortedPhaseItem + CachedRenderPipelinePhaseItem,
    GFBD: GetFullBatchData + Sync + Send + 'static,
{
    fn build(&self, app: &mut App) {
        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app
            .init_resource::<ViewSortedRenderPhases<SPI>>()
            .add_systems(
                Render,
                (
                    no_gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>
                        .run_if(resource_exists::<BatchedInstanceBuffer<GFBD::BufferData>>),
                    gpu_preprocessing::batch_and_prepare_sorted_render_phase::<SPI, GFBD>.run_if(
                        resource_exists::<
                            BatchedInstanceBuffers<GFBD::BufferData, GFBD::BufferInputData>,
                        >,
                    ),
                )
                    .in_set(RenderSet::PrepareResources),
            );
    }
}

impl UnbatchableBinnedEntityIndexSet {
    /// Adds a new entity to the list of unbatchable binned entities.
    pub fn add(&mut self, indices: UnbatchableBinnedEntityIndices) {
        match self {
            UnbatchableBinnedEntityIndexSet::NoEntities => {
                if indices.extra_index.is_dynamic_offset() {
                    // This is the first entity we've seen, and we don't have
                    // compute shaders. Initialize an array.
                    *self = UnbatchableBinnedEntityIndexSet::Dense(vec![indices]);
                } else {
                    // This is the first entity we've seen, and we have compute
                    // shaders. Initialize the fast path.
                    *self = UnbatchableBinnedEntityIndexSet::Sparse {
                        instance_range: indices.instance_index..indices.instance_index + 1,
                        first_indirect_parameters_index: indices
                            .extra_index
                            .as_indirect_parameters_index()
                            .and_then(|index| NonMaxU32::try_from(index).ok()),
                    }
                }
            }

            UnbatchableBinnedEntityIndexSet::Sparse {
                ref mut instance_range,
                first_indirect_parameters_index,
            } if instance_range.end == indices.instance_index
                && ((first_indirect_parameters_index.is_none()
                    && indices.extra_index == PhaseItemExtraIndex::NONE)
                    || first_indirect_parameters_index.is_some_and(
                        |first_indirect_parameters_index| {
                            Some(
                                u32::from(first_indirect_parameters_index) + instance_range.end
                                    - instance_range.start,
                            ) == indices.extra_index.as_indirect_parameters_index()
                        },
                    )) =>
            {
                // This is the normal case on non-WebGL 2.
                instance_range.end += 1;
            }

            UnbatchableBinnedEntityIndexSet::Sparse { instance_range, .. } => {
                // We thought we were in non-WebGL 2 mode, but we got a dynamic
                // offset or non-contiguous index anyway. This shouldn't happen,
                // but let's go ahead and do the sensible thing anyhow: demote
                // the compressed `NoDynamicOffsets` field to the full
                // `DynamicOffsets` array.
                let new_dynamic_offsets = (0..instance_range.len() as u32)
                    .flat_map(|entity_index| self.indices_for_entity_index(entity_index))
                    .chain(iter::once(indices))
                    .collect();
                *self = UnbatchableBinnedEntityIndexSet::Dense(new_dynamic_offsets);
            }

            UnbatchableBinnedEntityIndexSet::Dense(ref mut dense_indices) => {
                dense_indices.push(indices);
            }
        }
    }
}

/// A collection of all items to be rendered that will be encoded to GPU
/// commands for a single render phase for a single view.
///
/// Each view (camera, or shadow-casting light, etc.) can have one or multiple render phases.
/// They are used to queue entities for rendering.
/// Multiple phases might be required due to different sorting/batching behaviors
/// (e.g. opaque: front to back, transparent: back to front) or because one phase depends on
/// the rendered texture of the previous phase (e.g. for screen-space reflections).
/// All [`PhaseItem`]s are then rendered using a single [`TrackedRenderPass`].
/// The render pass might be reused for multiple phases to reduce GPU overhead.
///
/// This flavor of render phase is used only for meshes that need to be sorted
/// back-to-front, such as transparent meshes. For items that don't need strict
/// sorting, [`BinnedRenderPhase`] is preferred, for performance.
pub struct SortedRenderPhase<I>
where
    I: SortedPhaseItem,
{
    /// The items within this [`SortedRenderPhase`].
    pub items: Vec<I>,
}

impl<I> Default for SortedRenderPhase<I>
where
    I: SortedPhaseItem,
{
    fn default() -> Self {
        Self { items: Vec::new() }
    }
}

impl<I> SortedRenderPhase<I>
where
    I: SortedPhaseItem,
{
    /// Adds a [`PhaseItem`] to this render phase.
    #[inline]
    pub fn add(&mut self, item: I) {
        self.items.push(item);
    }

    /// Removes all [`PhaseItem`]s from this render phase.
    #[inline]
    pub fn clear(&mut self) {
        self.items.clear();
    }

    /// Sorts all of its [`PhaseItem`]s.
    pub fn sort(&mut self) {
        I::sort(&mut self.items);
    }

    /// An [`Iterator`] through the associated [`Entity`] for each [`PhaseItem`] in order.
    #[inline]
    pub fn iter_entities(&'_ self) -> impl Iterator<Item = Entity> + '_ {
        self.items.iter().map(|item| item.entity())
    }

    /// Renders all of its [`PhaseItem`]s using their corresponding draw functions.
    pub fn render<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
    ) {
        self.render_range(render_pass, world, view, ..);
    }

    /// Renders all [`PhaseItem`]s in the provided `range` (based on their index in `self.items`) using their corresponding draw functions.
    pub fn render_range<'w>(
        &self,
        render_pass: &mut TrackedRenderPass<'w>,
        world: &'w World,
        view: Entity,
        range: impl SliceIndex<[I], Output = [I]>,
    ) {
        let items = self
            .items
            .get(range)
            .expect("`Range` provided to `render_range()` is out of bounds");

        let draw_functions = world.resource::<DrawFunctions<I>>();
        let mut draw_functions = draw_functions.write();
        draw_functions.prepare(world);

        let mut index = 0;
        while index < items.len() {
            let item = &items[index];
            let batch_range = item.batch_range();
            if batch_range.is_empty() {
                index += 1;
            } else {
                let draw_function = draw_functions.get_mut(item.draw_function()).unwrap();
                draw_function.draw(world, render_pass, view, item);
                index += batch_range.len();
            }
        }
    }
}

/// An item (entity of the render world) which will be drawn to a texture or the screen,
/// as part of a render phase.
///
/// The data required for rendering an entity is extracted from the main world in the
/// [`ExtractSchedule`](crate::ExtractSchedule).
/// Then it has to be queued up for rendering during the [`RenderSet::Queue`],
/// by adding a corresponding phase item to a render phase.
/// Afterwards it will be possibly sorted and rendered automatically in the
/// [`RenderSet::PhaseSort`] and [`RenderSet::Render`], respectively.
///
/// `PhaseItem`s come in two flavors: [`BinnedPhaseItem`]s and
/// [`SortedPhaseItem`]s.
///
/// * Binned phase items have a `BinKey` which specifies what bin they're to be
/// placed in. All items in the same bin are eligible to be batched together.
/// The `BinKey`s are sorted, but the individual bin items aren't. Binned phase
/// items are good for opaque meshes, in which the order of rendering isn't
/// important. Generally, binned phase items are faster than sorted phase items.
///
/// * Sorted phase items, on the other hand, are placed into one large buffer
/// and then sorted all at once. This is needed for transparent meshes, which
/// have to be sorted back-to-front to render with the painter's algorithm.
/// These types of phase items are generally slower than binned phase items.
pub trait PhaseItem: Sized + Send + Sync + 'static {
    /// Whether or not this `PhaseItem` should be subjected to automatic batching. (Default: `true`)
    const AUTOMATIC_BATCHING: bool = true;

    /// The corresponding entity that will be drawn.
    ///
    /// This is used to fetch the render data of the entity, required by the draw function,
    /// from the render world .
    fn entity(&self) -> Entity;

    /// Specifies the [`Draw`] function used to render the item.
    fn draw_function(&self) -> DrawFunctionId;

    /// The range of instances that the batch covers. After doing a batched draw, batch range
    /// length phase items will be skipped. This design is to avoid having to restructure the
    /// render phase unnecessarily.
    fn batch_range(&self) -> &Range<u32>;
    fn batch_range_mut(&mut self) -> &mut Range<u32>;

    /// Returns the [`PhaseItemExtraIndex`].
    ///
    /// If present, this is either a dynamic offset or an indirect parameters
    /// index.
    fn extra_index(&self) -> PhaseItemExtraIndex;

    /// Returns a pair of mutable references to both the batch range and extra
    /// index.
    fn batch_range_and_extra_index_mut(&mut self) -> (&mut Range<u32>, &mut PhaseItemExtraIndex);
}

/// The "extra index" associated with some [`PhaseItem`]s, alongside the
/// indirect instance index.
///
/// Sometimes phase items require another index in addition to the range of
/// instances they already have. These can be:
///
/// * The *dynamic offset*: a `wgpu` dynamic offset into the uniform buffer of
/// instance data. This is used on platforms that don't support storage
/// buffers, to work around uniform buffer size limitations.
///
/// * The *indirect parameters index*: an index into the buffer that specifies
/// the indirect parameters for this [`PhaseItem`]'s drawcall. This is used when
/// indirect mode is on (as used for GPU culling).
///
/// Note that our indirect draw functionality requires storage buffers, so it's
/// impossible to have both a dynamic offset and an indirect parameters index.
/// This convenient fact allows us to pack both indices into a single `u32`.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct PhaseItemExtraIndex(pub u32);

impl Debug for PhaseItemExtraIndex {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        if self.is_dynamic_offset() {
            write!(f, "DynamicOffset({})", self.offset())
        } else if self.is_indirect_parameters_index() {
            write!(f, "IndirectParametersIndex({})", self.offset())
        } else {
            write!(f, "None")
        }
    }
}

impl PhaseItemExtraIndex {
    /// The flag that indicates that this index is an indirect parameter. If not
    /// set, this is a dynamic offset.
    pub const INDIRECT_PARAMETER_INDEX: u32 = 1 << 31;
    /// To extract the index from a packed [`PhaseItemExtraIndex`], bitwise-and
    /// the contents with this value.
    pub const OFFSET_MASK: u32 = Self::INDIRECT_PARAMETER_INDEX - 1;
    /// To extract the flag from a packed [`PhaseItemExtraIndex`], bitwise-and
    /// the contents with this value.
    pub const FLAGS_MASK: u32 = !Self::OFFSET_MASK;

    /// The special value that indicates that no extra index is present.
    pub const NONE: PhaseItemExtraIndex = PhaseItemExtraIndex(u32::MAX);

    /// Returns either the indirect parameters index or the dynamic offset,
    /// depending on which is in use.
    #[inline]
    fn offset(&self) -> u32 {
        self.0 & Self::OFFSET_MASK
    }

    /// Determines whether this extra index is a dynamic offset.
    #[inline]
    fn is_dynamic_offset(&self) -> bool {
        *self != Self::NONE && (self.0 & Self::INDIRECT_PARAMETER_INDEX) == 0
    }

    /// Determines whether this extra index is an indirect parameters index.
    #[inline]
    fn is_indirect_parameters_index(&self) -> bool {
        *self != Self::NONE && (self.0 & Self::INDIRECT_PARAMETER_INDEX) != 0
    }

    /// Packs a indirect parameters index into this extra index.
    #[inline]
    pub fn indirect_parameters_index(indirect_parameter_index: u32) -> PhaseItemExtraIndex {
        // Make sure we didn't overflow.
        debug_assert_eq!(indirect_parameter_index & Self::FLAGS_MASK, 0);
        PhaseItemExtraIndex(indirect_parameter_index | Self::INDIRECT_PARAMETER_INDEX)
    }

    /// Returns either an indirect parameters index or
    /// [`PhaseItemExtraIndex::NONE`], as appropriate.
    #[inline]
    pub fn maybe_indirect_parameters_index(
        maybe_indirect_parameters_index: Option<NonMaxU32>,
    ) -> PhaseItemExtraIndex {
        match maybe_indirect_parameters_index {
            Some(indirect_parameters_index) => {
                Self::indirect_parameters_index(indirect_parameters_index.into())
            }
            None => PhaseItemExtraIndex::NONE,
        }
    }

    /// Packs a dynamic offset into this extra index.
    #[inline]
    pub fn dynamic_offset(dynamic_offset: u32) -> PhaseItemExtraIndex {
        // Make sure we didn't overflow.
        debug_assert_eq!(dynamic_offset & Self::FLAGS_MASK, 0);

        PhaseItemExtraIndex(dynamic_offset)
    }

    /// Returns either a dynamic offset or [`PhaseItemExtraIndex::NONE`], as
    /// appropriate.
    #[inline]
    pub fn maybe_dynamic_offset(maybe_dynamic_offset: Option<NonMaxU32>) -> PhaseItemExtraIndex {
        match maybe_dynamic_offset {
            Some(dynamic_offset) => Self::dynamic_offset(dynamic_offset.into()),
            None => PhaseItemExtraIndex::NONE,
        }
    }

    /// If this extra index describes a dynamic offset, returns it; otherwise,
    /// returns `None`.
    #[inline]
    pub fn as_dynamic_offset(&self) -> Option<NonMaxU32> {
        if self.is_dynamic_offset() {
            NonMaxU32::try_from(self.0 & Self::OFFSET_MASK).ok()
        } else {
            None
        }
    }

    /// If this extra index describes an indirect parameters index, returns it;
    /// otherwise, returns `None`.
    #[inline]
    pub fn as_indirect_parameters_index(&self) -> Option<u32> {
        if self.is_indirect_parameters_index() {
            Some(self.0 & Self::OFFSET_MASK)
        } else {
            None
        }
    }
}

/// Represents phase items that are placed into bins. The `BinKey` specifies
/// which bin they're to be placed in. Bin keys are sorted, and items within the
/// same bin are eligible to be batched together. The elements within the bins
/// aren't themselves sorted.
///
/// An example of a binned phase item is `Opaque3d`, for which the rendering
/// order isn't critical.
pub trait BinnedPhaseItem: PhaseItem {
    /// The key used for binning [`PhaseItem`]s into bins. Order the members of
    /// [`BinnedPhaseItem::BinKey`] by the order of binding for best
    /// performance. For example, pipeline id, draw function id, mesh asset id,
    /// lowest variable bind group id such as the material bind group id, and
    /// its dynamic offsets if any, next bind group and offsets, etc. This
    /// reduces the need for rebinding between bins and improves performance.
    type BinKey: Clone + Send + Sync + Eq + Ord + Hash;

    /// Creates a new binned phase item from the key and per-entity data.
    ///
    /// Unlike [`SortedPhaseItem`]s, this is generally called "just in time"
    /// before rendering. The resulting phase item isn't stored in any data
    /// structures, resulting in significant memory savings.
    fn new(
        key: Self::BinKey,
        representative_entity: Entity,
        batch_range: Range<u32>,
        extra_index: PhaseItemExtraIndex,
    ) -> Self;
}

/// Represents phase items that must be sorted. The `SortKey` specifies the
/// order that these items are drawn in. These are placed into a single array,
/// and the array as a whole is then sorted.
///
/// An example of a sorted phase item is `Transparent3d`, which must be sorted
/// back to front in order to correctly render with the painter's algorithm.
pub trait SortedPhaseItem: PhaseItem {
    /// The type used for ordering the items. The smallest values are drawn first.
    /// This order can be calculated using the [`ViewRangefinder3d`],
    /// based on the view-space `Z` value of the corresponding view matrix.
    type SortKey: Ord;

    /// Determines the order in which the items are drawn.
    fn sort_key(&self) -> Self::SortKey;

    /// Sorts a slice of phase items into render order. Generally if the same type
    /// is batched this should use a stable sort like [`slice::sort_by_key`].
    /// In almost all other cases, this should not be altered from the default,
    /// which uses a unstable sort, as this provides the best balance of CPU and GPU
    /// performance.
    ///
    /// Implementers can optionally not sort the list at all. This is generally advisable if and
    /// only if the renderer supports a depth prepass, which is by default not supported by
    /// the rest of Bevy's first party rendering crates. Even then, this may have a negative
    /// impact on GPU-side performance due to overdraw.
    ///
    /// It's advised to always profile for performance changes when changing this implementation.
    #[inline]
    fn sort(items: &mut [Self]) {
        items.sort_unstable_by_key(|item| item.sort_key());
    }
}

/// A [`PhaseItem`] item, that automatically sets the appropriate render pipeline,
/// cached in the [`PipelineCache`].
///
/// You can use the [`SetItemPipeline`] render command to set the pipeline for this item.
pub trait CachedRenderPipelinePhaseItem: PhaseItem {
    /// The id of the render pipeline, cached in the [`PipelineCache`], that will be used to draw
    /// this phase item.
    fn cached_pipeline(&self) -> CachedRenderPipelineId;
}

/// A [`RenderCommand`] that sets the pipeline for the [`CachedRenderPipelinePhaseItem`].
pub struct SetItemPipeline;

impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewQuery = ();
    type ItemQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: Option<()>,
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        if let Some(pipeline) = pipeline_cache
            .into_inner()
            .get_render_pipeline(item.cached_pipeline())
        {
            pass.set_render_pipeline(pipeline);
            RenderCommandResult::Success
        } else {
            RenderCommandResult::Failure
        }
    }
}

/// This system sorts the [`PhaseItem`]s of all [`SortedRenderPhase`]s of this
/// type.
pub fn sort_phase_system<I>(mut render_phases: ResMut<ViewSortedRenderPhases<I>>)
where
    I: SortedPhaseItem,
{
    for phase in render_phases.values_mut() {
        phase.sort();
    }
}

impl BinnedRenderPhaseType {
    /// Creates the appropriate [`BinnedRenderPhaseType`] for a mesh, given its
    /// batchability.
    pub fn mesh(batchable: bool) -> BinnedRenderPhaseType {
        if batchable {
            BinnedRenderPhaseType::BatchableMesh
        } else {
            BinnedRenderPhaseType::UnbatchableMesh
        }
    }
}