bevy_render/render_resource/bind_group.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
use crate::renderer::WgpuWrapper;
use crate::{
define_atomic_id,
render_asset::RenderAssets,
render_resource::{BindGroupLayout, Buffer, Sampler, TextureView},
renderer::RenderDevice,
texture::GpuImage,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::system::{SystemParam, SystemParamItem};
pub use bevy_render_macros::AsBindGroup;
use core::ops::Deref;
use encase::ShaderType;
use thiserror::Error;
use wgpu::{
BindGroupEntry, BindGroupLayoutEntry, BindingResource, SamplerBindingType, TextureViewDimension,
};
use super::{BindlessDescriptor, BindlessSlabResourceLimit};
define_atomic_id!(BindGroupId);
/// Bind groups are responsible for binding render resources (e.g. buffers, textures, samplers)
/// to a [`TrackedRenderPass`](crate::render_phase::TrackedRenderPass).
/// This makes them accessible in the pipeline (shaders) as uniforms.
///
/// This is a lightweight thread-safe wrapper around wgpu's own [`BindGroup`](wgpu::BindGroup),
/// which can be cloned as needed to workaround lifetime management issues. It may be converted
/// from and dereferences to wgpu's [`BindGroup`](wgpu::BindGroup).
///
/// Can be created via [`RenderDevice::create_bind_group`](RenderDevice::create_bind_group).
#[derive(Clone, Debug)]
pub struct BindGroup {
id: BindGroupId,
value: WgpuWrapper<wgpu::BindGroup>,
}
impl BindGroup {
/// Returns the [`BindGroupId`] representing the unique ID of the bind group.
#[inline]
pub fn id(&self) -> BindGroupId {
self.id
}
}
impl PartialEq for BindGroup {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for BindGroup {}
impl core::hash::Hash for BindGroup {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.id.0.hash(state);
}
}
impl From<wgpu::BindGroup> for BindGroup {
fn from(value: wgpu::BindGroup) -> Self {
BindGroup {
id: BindGroupId::new(),
value: WgpuWrapper::new(value),
}
}
}
impl<'a> From<&'a BindGroup> for Option<&'a wgpu::BindGroup> {
fn from(value: &'a BindGroup) -> Self {
Some(value.deref())
}
}
impl<'a> From<&'a mut BindGroup> for Option<&'a wgpu::BindGroup> {
fn from(value: &'a mut BindGroup) -> Self {
Some(&*value)
}
}
impl Deref for BindGroup {
type Target = wgpu::BindGroup;
#[inline]
fn deref(&self) -> &Self::Target {
&self.value
}
}
/// Converts a value to a [`BindGroup`] with a given [`BindGroupLayout`], which can then be used in Bevy shaders.
/// This trait can be derived (and generally should be). Read on for details and examples.
///
/// This is an opinionated trait that is intended to make it easy to generically
/// convert a type into a [`BindGroup`]. It provides access to specific render resources,
/// such as [`RenderAssets<GpuImage>`] and [`crate::texture::FallbackImage`]. If a type has a [`Handle<Image>`](bevy_asset::Handle),
/// these can be used to retrieve the corresponding [`Texture`](crate::render_resource::Texture) resource.
///
/// [`AsBindGroup::as_bind_group`] is intended to be called once, then the result cached somewhere. It is generally
/// ok to do "expensive" work here, such as creating a [`Buffer`] for a uniform.
///
/// If for some reason a [`BindGroup`] cannot be created yet (for example, the [`Texture`](crate::render_resource::Texture)
/// for an [`Image`](bevy_image::Image) hasn't loaded yet), just return [`AsBindGroupError::RetryNextUpdate`], which signals that the caller
/// should retry again later.
///
/// # Deriving
///
/// This trait can be derived. Field attributes like `uniform` and `texture` are used to define which fields should be bindings,
/// what their binding type is, and what index they should be bound at:
///
/// ```
/// # use bevy_render::render_resource::*;
/// # use bevy_image::Image;
/// # use bevy_color::LinearRgba;
/// # use bevy_asset::Handle;
/// # use bevy_render::storage::ShaderStorageBuffer;
///
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// #[storage(3, read_only)]
/// storage_buffer: Handle<ShaderStorageBuffer>,
/// #[storage(4, read_only, buffer)]
/// raw_buffer: Buffer,
/// #[storage_texture(5)]
/// storage_texture: Handle<Image>,
/// }
/// ```
///
/// In WGSL shaders, the binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// @group(2) @binding(3) var<storage> storage_buffer: array<f32>;
/// @group(2) @binding(4) var<storage> raw_buffer: array<f32>;
/// @group(2) @binding(5) var storage_texture: texture_storage_2d<rgba8unorm, read_write>;
/// ```
/// Note that the "group" index is determined by the usage context. It is not defined in [`AsBindGroup`]. For example, in Bevy material bind groups
/// are generally bound to group 2.
///
/// The following field-level attributes are supported:
///
/// ## `uniform(BINDING_INDEX)`
///
/// * The field will be converted to a shader-compatible type using the [`ShaderType`] trait, written to a [`Buffer`], and bound as a uniform.
/// [`ShaderType`] is implemented for most math types already, such as [`f32`], [`Vec4`](bevy_math::Vec4), and
/// [`LinearRgba`](bevy_color::LinearRgba). It can also be derived for custom structs.
///
/// ## `texture(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Texture`](crate::render_resource::Texture)
/// GPU resource, which will be bound as a texture in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute
/// (with a different binding index) if a binding of the sampler for the [`Image`](bevy_image::Image) is also required.
///
/// | Arguments | Values | Default |
/// |-----------------------|-------------------------------------------------------------------------|----------------------|
/// | `dimension` = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
/// | `sample_type` = "..." | `"float"`, `"depth"`, `"s_int"` or `"u_int"` | `"float"` |
/// | `filterable` = ... | `true`, `false` | `true` |
/// | `multisampled` = ... | `true`, `false` | `false` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
///
/// ## `storage_texture(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Texture`](crate::render_resource::Texture)
/// GPU resource, which will be bound as a storage texture in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead.
///
/// | Arguments | Values | Default |
/// |------------------------|--------------------------------------------------------------------------------------------|---------------|
/// | `dimension` = "..." | `"1d"`, `"2d"`, `"2d_array"`, `"3d"`, `"cube"`, `"cube_array"` | `"2d"` |
/// | `image_format` = ... | any member of [`TextureFormat`](crate::render_resource::TextureFormat) | `Rgba8Unorm` |
/// | `access` = ... | any member of [`StorageTextureAccess`](crate::render_resource::StorageTextureAccess) | `ReadWrite` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `compute` |
///
/// ## `sampler(BINDING_INDEX, arguments)`
///
/// * This field's [`Handle<Image>`](bevy_asset::Handle) will be used to look up the matching [`Sampler`] GPU
/// resource, which will be bound as a sampler in shaders. The field will be assumed to implement [`Into<Option<Handle<Image>>>`]. In practice,
/// most fields should be a [`Handle<Image>`](bevy_asset::Handle) or [`Option<Handle<Image>>`]. If the value of an [`Option<Handle<Image>>`] is
/// [`None`], the [`crate::texture::FallbackImage`] resource will be used instead. This attribute can be used in conjunction with a `texture` binding attribute
/// (with a different binding index) if a binding of the texture for the [`Image`](bevy_image::Image) is also required.
///
/// | Arguments | Values | Default |
/// |------------------------|-------------------------------------------------------------------------|------------------------|
/// | `sampler_type` = "..." | `"filtering"`, `"non_filtering"`, `"comparison"`. | `"filtering"` |
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
///
/// ## `storage(BINDING_INDEX, arguments)`
///
/// * The field's [`Handle<Storage>`](bevy_asset::Handle) will be used to look
/// up the matching [`Buffer`] GPU resource, which will be bound as a storage
/// buffer in shaders. If the `storage` attribute is used, the field is expected
/// a raw buffer, and the buffer will be bound as a storage buffer in shaders.
/// In bindless mode, `binding_array()` argument that specifies the binding
/// number of the resulting storage buffer binding array must be present.
///
/// | Arguments | Values | Default |
/// |------------------------|-------------------------------------------------------------------------|------------------------|
/// | `visibility(...)` | `all`, `none`, or a list-combination of `vertex`, `fragment`, `compute` | `vertex`, `fragment` |
/// | `read_only` | if present then value is true, otherwise false | `false` |
/// | `buffer` | if present then the field will be assumed to be a raw wgpu buffer | |
/// | `binding_array(...)` | the binding number of the binding array, for bindless mode | bindless mode disabled |
///
/// Note that fields without field-level binding attributes will be ignored.
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// # use bevy_asset::Handle;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// this_field_is_ignored: String,
/// }
/// ```
///
/// As mentioned above, [`Option<Handle<Image>>`] is also supported:
/// ```
/// # use bevy_asset::Handle;
/// # use bevy_color::LinearRgba;
/// # use bevy_image::Image;
/// # use bevy_render::render_resource::AsBindGroup;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Option<Handle<Image>>,
/// }
/// ```
/// This is useful if you want a texture to be optional. When the value is [`None`], the [`crate::texture::FallbackImage`] will be used for the binding instead, which defaults
/// to "pure white".
///
/// Field uniforms with the same index will be combined into a single binding:
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// #[uniform(0)]
/// roughness: f32,
/// }
/// ```
///
/// In WGSL shaders, the binding would look like this:
/// ```wgsl
/// struct CoolMaterial {
/// color: vec4<f32>,
/// roughness: f32,
/// };
///
/// @group(2) @binding(0) var<uniform> material: CoolMaterial;
/// ```
///
/// Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes:
/// ## `uniform(BINDING_INDEX, ConvertedShaderType)`
///
/// * This also creates a [`Buffer`] using [`ShaderType`] and binds it as a
/// uniform, much like the field-level `uniform` attribute. The difference is
/// that the entire [`AsBindGroup`] value is converted to `ConvertedShaderType`,
/// which must implement [`ShaderType`], instead of a specific field
/// implementing [`ShaderType`]. This is useful if more complicated conversion
/// logic is required, or when using bindless mode (see below). The conversion
/// is done using the [`AsBindGroupShaderType<ConvertedShaderType>`] trait,
/// which is automatically implemented if `&Self` implements
/// [`Into<ConvertedShaderType>`]. Outside of bindless mode, only use
/// [`AsBindGroupShaderType`] if access to resources like
/// [`RenderAssets<GpuImage>`] is required.
///
/// * In bindless mode (see `bindless(COUNT)`), this attribute becomes
/// `uniform(BINDLESS_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX))`. The resulting uniform buffers will be
/// available in the shader as a binding array at the given `BINDING_INDEX`. The
/// `BINDLESS_INDEX` specifies the offset of the buffer in the bindless index
/// table.
///
/// For example, suppose that the material slot is stored in a variable named
/// `slot`, the bindless index table is named `material_indices`, and that the
/// first field (index 0) of the bindless index table type is named
/// `material`. Then specifying `#[uniform(0, StandardMaterialUniform,
/// binding_array(10)]` will create a binding array buffer declared in the
/// shader as `var<storage> material_array:
/// binding_array<StandardMaterialUniform>` and accessible as
/// `material_array[material_indices[slot].material]`.
///
/// ## `data(BINDING_INDEX, ConvertedShaderType, binding_array(BINDING_INDEX))`
///
/// * This is very similar to `uniform(BINDING_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX)` and in fact is identical if bindless mode
/// isn't being used. The difference is that, in bindless mode, the `data`
/// attribute produces a single buffer containing an array, not an array of
/// buffers. For example, suppose you had the following declaration:
///
/// ```ignore
/// #[uniform(0, StandardMaterialUniform, binding_array(10))]
/// struct StandardMaterial { ... }
/// ```
///
/// In bindless mode, this will produce a binding matching the following WGSL
/// declaration:
///
/// ```wgsl
/// @group(2) @binding(10) var<storage> material_array: binding_array<StandardMaterial>;
/// ```
///
/// On the other hand, if you write this declaration:
///
/// ```ignore
/// #[data(0, StandardMaterialUniform, binding_array(10))]
/// struct StandardMaterial { ... }
/// ```
///
/// Then Bevy produces a binding that matches this WGSL declaration instead:
///
/// ```wgsl
/// @group(2) @binding(10) var<storage> material_array: array<StandardMaterial>;
/// ```
///
/// * Just as with the structure-level `uniform` attribute, Bevy converts the
/// entire [`AsBindGroup`] to `ConvertedShaderType`, using the
/// [`AsBindGroupShaderType<ConvertedShaderType>`] trait.
///
/// * In non-bindless mode, the structure-level `data` attribute is the same as
/// the structure-level `uniform` attribute and produces a single uniform buffer
/// in the shader. The above example would result in a binding that looks like
/// this in WGSL in non-bindless mode:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> material: StandardMaterial;
/// ```
///
/// * For efficiency reasons, `data` is generally preferred over `uniform`
/// unless you need to place your data in individual buffers.
///
/// ## `bind_group_data(DataType)`
///
/// * The [`AsBindGroup`] type will be converted to some `DataType` using [`Into<DataType>`] and stored
/// as [`AsBindGroup::Data`] as part of the [`AsBindGroup::as_bind_group`] call. This is useful if data needs to be stored alongside
/// the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute
/// is "shader pipeline specialization". See [`SpecializedRenderPipeline`](crate::render_resource::SpecializedRenderPipeline).
///
/// ## `bindless`
///
/// * This switch enables *bindless resources*, which changes the way Bevy
/// supplies resources (textures, and samplers) to the shader. When bindless
/// resources are enabled, and the current platform supports them, Bevy will
/// allocate textures, and samplers into *binding arrays*, separated based on
/// type and will supply your shader with indices into those arrays.
/// * Bindless textures and samplers are placed into the appropriate global
/// array defined in `bevy_render::bindless` (`bindless.wgsl`).
/// * Bevy doesn't currently support bindless buffers, except for those created
/// with the `uniform(BINDLESS_INDEX, ConvertedShaderType,
/// binding_array(BINDING_INDEX))` attribute. If you need to include a buffer in
/// your object, and you can't create the data in that buffer with the `uniform`
/// attribute, consider a non-bindless object instead.
/// * If bindless mode is enabled, the `BINDLESS` definition will be
/// available. Because not all platforms support bindless resources, you
/// should check for the presence of this definition via `#ifdef` and fall
/// back to standard bindings if it isn't present.
/// * By default, in bindless mode, binding 0 becomes the *bindless index
/// table*, which is an array of structures, each of which contains as many
/// fields of type `u32` as the highest binding number in the structure
/// annotated with `#[derive(AsBindGroup)]`. Again by default, the *i*th field
/// of the bindless index table contains the index of the resource with binding
/// *i* within the appropriate binding array.
/// * In the case of materials, the index of the applicable table within the
/// bindless index table list corresponding to the mesh currently being drawn
/// can be retrieved with
/// `mesh[in.instance_index].material_and_lightmap_bind_group_slot & 0xffffu`.
/// * You can limit the size of the bindless slabs to N resources with the
/// `limit(N)` declaration. For example, `#[bindless(limit(16))]` ensures that
/// each slab will have no more than 16 total resources in it. If you don't
/// specify a limit, Bevy automatically picks a reasonable one for the current
/// platform.
/// * The `index_table(range(M..N), binding(B))` declaration allows you to
/// customize the layout of the bindless index table. This is useful for
/// materials that are composed of multiple bind groups, such as
/// `ExtendedMaterial`. In such cases, there will be multiple bindless index
/// tables, so they can't both be assigned to binding 0 or their bindings will
/// conflict.
/// - The `binding(B)` attribute of the `index_table` attribute allows you to
/// customize the binding (`@binding(B)`, in the shader) at which the index
/// table will be bound.
/// - The `range(M, N)` attribute of the `index_table` attribute allows you to
/// change the mapping from the field index in the bindless index table to the
/// bindless index. Instead of the field at index $i$ being mapped to the
/// bindless index $i$, with the `range(M, N)` attribute the field at index
/// $i$ in the bindless index table is mapped to the bindless index $i$ + M.
/// The size of the index table will be set to N - M. Note that this may
/// result in the table being too small to contain all the bindless bindings.
/// * The purpose of bindless mode is to improve performance by reducing
/// state changes. By grouping resources together into binding arrays, Bevy
/// doesn't have to modify GPU state as often, decreasing API and driver
/// overhead.
/// * See the `shaders/shader_material_bindless` example for an example of how
/// to use bindless mode. See the `shaders/extended_material_bindless` example
/// for a more exotic example of bindless mode that demonstrates the
/// `index_table` attribute.
/// * The following diagram illustrates how bindless mode works using a subset
/// of `StandardMaterial`:
///
/// ```text
/// Shader Bindings Sampler Binding Array
/// +----+-----------------------------+ +-----------+-----------+-----+
/// +---| 0 | material_indices | +->| sampler 0 | sampler 1 | ... |
/// | +----+-----------------------------+ | +-----------+-----------+-----+
/// | | 1 | bindless_samplers_filtering +--+ ^
/// | +----+-----------------------------+ +-------------------------------+
/// | | .. | ... | |
/// | +----+-----------------------------+ Texture Binding Array |
/// | | 5 | bindless_textures_2d +--+ +-----------+-----------+-----+ |
/// | +----+-----------------------------+ +->| texture 0 | texture 1 | ... | |
/// | | .. | ... | +-----------+-----------+-----+ |
/// | +----+-----------------------------+ ^ |
/// | + 10 | material_array +--+ +---------------------------+ |
/// | +----+-----------------------------+ | | |
/// | | Buffer Binding Array | |
/// | | +----------+----------+-----+ | |
/// | +->| buffer 0 | buffer 1 | ... | | |
/// | Material Bindless Indices +----------+----------+-----+ | |
/// | +----+-----------------------------+ ^ | |
/// +-->| 0 | material +----------+ | |
/// +----+-----------------------------+ | |
/// | 1 | base_color_texture +---------------------------------------+ |
/// +----+-----------------------------+ |
/// | 2 | base_color_sampler +-------------------------------------------+
/// +----+-----------------------------+
/// | .. | ... |
/// +----+-----------------------------+
/// ```
///
/// The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can
/// also be equivalently represented with a single struct-level uniform attribute:
/// ```
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderType}};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// #[uniform(0, CoolMaterialUniform)]
/// struct CoolMaterial {
/// color: LinearRgba,
/// roughness: f32,
/// }
///
/// #[derive(ShaderType)]
/// struct CoolMaterialUniform {
/// color: LinearRgba,
/// roughness: f32,
/// }
///
/// impl From<&CoolMaterial> for CoolMaterialUniform {
/// fn from(material: &CoolMaterial) -> CoolMaterialUniform {
/// CoolMaterialUniform {
/// color: material.color,
/// roughness: material.roughness,
/// }
/// }
/// }
/// ```
///
/// Setting `bind_group_data` looks like this:
/// ```
/// # use bevy_render::{render_resource::AsBindGroup};
/// # use bevy_color::LinearRgba;
/// #[derive(AsBindGroup)]
/// #[bind_group_data(CoolMaterialKey)]
/// struct CoolMaterial {
/// #[uniform(0)]
/// color: LinearRgba,
/// is_shaded: bool,
/// }
///
/// #[derive(Copy, Clone, Hash, Eq, PartialEq)]
/// struct CoolMaterialKey {
/// is_shaded: bool,
/// }
///
/// impl From<&CoolMaterial> for CoolMaterialKey {
/// fn from(material: &CoolMaterial) -> CoolMaterialKey {
/// CoolMaterialKey {
/// is_shaded: material.is_shaded,
/// }
/// }
/// }
/// ```
pub trait AsBindGroup {
/// Data that will be stored alongside the "prepared" bind group.
type Data: Send + Sync;
type Param: SystemParam + 'static;
/// The number of slots per bind group, if bindless mode is enabled.
///
/// If this bind group doesn't use bindless, then this will be `None`.
///
/// Note that the *actual* slot count may be different from this value, due
/// to platform limitations. For example, if bindless resources aren't
/// supported on this platform, the actual slot count will be 1.
fn bindless_slot_count() -> Option<BindlessSlabResourceLimit> {
None
}
/// True if the hardware *actually* supports bindless textures for this
/// type, taking the device and driver capabilities into account.
///
/// If this type doesn't use bindless textures, then the return value from
/// this function is meaningless.
fn bindless_supported(_: &RenderDevice) -> bool {
true
}
/// label
fn label() -> Option<&'static str> {
None
}
/// Creates a bind group for `self` matching the layout defined in [`AsBindGroup::bind_group_layout`].
fn as_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
param: &mut SystemParamItem<'_, '_, Self::Param>,
) -> Result<PreparedBindGroup<Self::Data>, AsBindGroupError> {
let UnpreparedBindGroup { bindings, data } =
Self::unprepared_bind_group(self, layout, render_device, param, false)?;
let entries = bindings
.iter()
.map(|(index, binding)| BindGroupEntry {
binding: *index,
resource: binding.get_binding(),
})
.collect::<Vec<_>>();
let bind_group = render_device.create_bind_group(Self::label(), layout, &entries);
Ok(PreparedBindGroup {
bindings,
bind_group,
data,
})
}
/// Returns a vec of (binding index, `OwnedBindingResource`).
///
/// In cases where `OwnedBindingResource` is not available (as for bindless
/// texture arrays currently), an implementor may return
/// `AsBindGroupError::CreateBindGroupDirectly` from this function and
/// instead define `as_bind_group` directly. This may prevent certain
/// features, such as bindless mode, from working correctly.
///
/// Set `force_no_bindless` to true to require that bindless textures *not*
/// be used. `ExtendedMaterial` uses this in order to ensure that the base
/// material doesn't use bindless mode if the extension doesn't.
fn unprepared_bind_group(
&self,
layout: &BindGroupLayout,
render_device: &RenderDevice,
param: &mut SystemParamItem<'_, '_, Self::Param>,
force_no_bindless: bool,
) -> Result<UnpreparedBindGroup<Self::Data>, AsBindGroupError>;
/// Creates the bind group layout matching all bind groups returned by
/// [`AsBindGroup::as_bind_group`]
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout
where
Self: Sized,
{
render_device.create_bind_group_layout(
Self::label(),
&Self::bind_group_layout_entries(render_device, false),
)
}
/// Returns a vec of bind group layout entries.
///
/// Set `force_no_bindless` to true to require that bindless textures *not*
/// be used. `ExtendedMaterial` uses this in order to ensure that the base
/// material doesn't use bindless mode if the extension doesn't.
fn bind_group_layout_entries(
render_device: &RenderDevice,
force_no_bindless: bool,
) -> Vec<BindGroupLayoutEntry>
where
Self: Sized;
fn bindless_descriptor() -> Option<BindlessDescriptor> {
None
}
}
/// An error that occurs during [`AsBindGroup::as_bind_group`] calls.
#[derive(Debug, Error)]
pub enum AsBindGroupError {
/// The bind group could not be generated. Try again next frame.
#[error("The bind group could not be generated")]
RetryNextUpdate,
#[error("Create the bind group via `as_bind_group()` instead")]
CreateBindGroupDirectly,
#[error("At binding index {0}, the provided image sampler `{1}` does not match the required sampler type(s) `{2}`.")]
InvalidSamplerType(u32, String, String),
}
/// A prepared bind group returned as a result of [`AsBindGroup::as_bind_group`].
pub struct PreparedBindGroup<T> {
pub bindings: BindingResources,
pub bind_group: BindGroup,
pub data: T,
}
/// a map containing `OwnedBindingResource`s, keyed by the target binding index
pub struct UnpreparedBindGroup<T> {
pub bindings: BindingResources,
pub data: T,
}
/// A pair of binding index and binding resource, used as part of
/// [`PreparedBindGroup`] and [`UnpreparedBindGroup`].
#[derive(Deref, DerefMut)]
pub struct BindingResources(pub Vec<(u32, OwnedBindingResource)>);
/// An owned binding resource of any type (ex: a [`Buffer`], [`TextureView`], etc).
/// This is used by types like [`PreparedBindGroup`] to hold a single list of all
/// render resources used by bindings.
#[derive(Debug)]
pub enum OwnedBindingResource {
Buffer(Buffer),
TextureView(TextureViewDimension, TextureView),
Sampler(SamplerBindingType, Sampler),
Data(OwnedData),
}
/// Data that will be copied into a GPU buffer.
///
/// This corresponds to the `#[data]` attribute in `AsBindGroup`.
#[derive(Debug, Deref, DerefMut)]
pub struct OwnedData(pub Vec<u8>);
impl OwnedBindingResource {
/// Creates a [`BindingResource`] reference to this
/// [`OwnedBindingResource`].
///
/// Note that this operation panics if passed a
/// [`OwnedBindingResource::Data`], because [`OwnedData`] doesn't itself
/// correspond to any binding and instead requires the
/// `MaterialBindGroupAllocator` to pack it into a buffer.
pub fn get_binding(&self) -> BindingResource {
match self {
OwnedBindingResource::Buffer(buffer) => buffer.as_entire_binding(),
OwnedBindingResource::TextureView(_, view) => BindingResource::TextureView(view),
OwnedBindingResource::Sampler(_, sampler) => BindingResource::Sampler(sampler),
OwnedBindingResource::Data(_) => panic!("`OwnedData` has no binding resource"),
}
}
}
/// Converts a value to a [`ShaderType`] for use in a bind group.
///
/// This is automatically implemented for references that implement [`Into`].
/// Generally normal [`Into`] / [`From`] impls should be preferred, but
/// sometimes additional runtime metadata is required.
/// This exists largely to make some [`AsBindGroup`] use cases easier.
pub trait AsBindGroupShaderType<T: ShaderType> {
/// Return the `T` [`ShaderType`] for `self`. When used in [`AsBindGroup`]
/// derives, it is safe to assume that all images in `self` exist.
fn as_bind_group_shader_type(&self, images: &RenderAssets<GpuImage>) -> T;
}
impl<T, U: ShaderType> AsBindGroupShaderType<U> for T
where
for<'a> &'a T: Into<U>,
{
#[inline]
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U {
self.into()
}
}
#[cfg(test)]
mod test {
use super::*;
use bevy_asset::Handle;
use bevy_image::Image;
#[test]
fn texture_visibility() {
#[derive(AsBindGroup)]
pub struct TextureVisibilityTest {
#[texture(0, visibility(all))]
pub all: Handle<Image>,
#[texture(1, visibility(none))]
pub none: Handle<Image>,
#[texture(2, visibility(fragment))]
pub fragment: Handle<Image>,
#[texture(3, visibility(vertex))]
pub vertex: Handle<Image>,
#[texture(4, visibility(compute))]
pub compute: Handle<Image>,
#[texture(5, visibility(vertex, fragment))]
pub vertex_fragment: Handle<Image>,
#[texture(6, visibility(vertex, compute))]
pub vertex_compute: Handle<Image>,
#[texture(7, visibility(fragment, compute))]
pub fragment_compute: Handle<Image>,
#[texture(8, visibility(vertex, fragment, compute))]
pub vertex_fragment_compute: Handle<Image>,
}
}
}