1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
use std::{iter, marker::PhantomData};

use crate::{
    render_resource::Buffer,
    renderer::{RenderDevice, RenderQueue},
};
use bytemuck::{must_cast_slice, NoUninit};
use encase::{
    internal::{WriteInto, Writer},
    ShaderType,
};
use wgpu::{BindingResource, BufferAddress, BufferUsages};

use super::GpuArrayBufferable;

/// A structure for storing raw bytes that have already been properly formatted
/// for use by the GPU.
///
/// "Properly formatted" means that item data already meets the alignment and padding
/// requirements for how it will be used on the GPU. The item type must implement [`NoUninit`]
/// for its data representation to be directly copyable.
///
/// Index, vertex, and instance-rate vertex buffers have no alignment nor padding requirements and
/// so this helper type is a good choice for them.
///
/// The contained data is stored in system RAM. Calling [`reserve`](RawBufferVec::reserve)
/// allocates VRAM from the [`RenderDevice`].
/// [`write_buffer`](RawBufferVec::write_buffer) queues copying of the data
/// from system RAM to VRAM.
///
/// Other options for storing GPU-accessible data are:
/// * [`StorageBuffer`](crate::render_resource::StorageBuffer)
/// * [`DynamicStorageBuffer`](crate::render_resource::DynamicStorageBuffer)
/// * [`UniformBuffer`](crate::render_resource::UniformBuffer)
/// * [`DynamicUniformBuffer`](crate::render_resource::DynamicUniformBuffer)
/// * [`GpuArrayBuffer`](crate::render_resource::GpuArrayBuffer)
/// * [`BufferVec`]
/// * [`Texture`](crate::render_resource::Texture)
pub struct RawBufferVec<T: NoUninit> {
    values: Vec<T>,
    buffer: Option<Buffer>,
    capacity: usize,
    item_size: usize,
    buffer_usage: BufferUsages,
    label: Option<String>,
    changed: bool,
}

impl<T: NoUninit> RawBufferVec<T> {
    /// Creates a new [`RawBufferVec`] with the given [`BufferUsages`].
    pub const fn new(buffer_usage: BufferUsages) -> Self {
        Self {
            values: Vec::new(),
            buffer: None,
            capacity: 0,
            item_size: std::mem::size_of::<T>(),
            buffer_usage,
            label: None,
            changed: false,
        }
    }

    /// Returns a handle to the buffer, if the data has been uploaded.
    #[inline]
    pub fn buffer(&self) -> Option<&Buffer> {
        self.buffer.as_ref()
    }

    /// Returns the binding for the buffer if the data has been uploaded.
    #[inline]
    pub fn binding(&self) -> Option<BindingResource> {
        Some(BindingResource::Buffer(
            self.buffer()?.as_entire_buffer_binding(),
        ))
    }

    /// Returns the amount of space that the GPU will use before reallocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.capacity
    }

    /// Returns the number of items that have been pushed to this buffer.
    #[inline]
    pub fn len(&self) -> usize {
        self.values.len()
    }

    /// Returns true if the buffer is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.values.is_empty()
    }

    /// Adds a new value and returns its index.
    pub fn push(&mut self, value: T) -> usize {
        let index = self.values.len();
        self.values.push(value);
        index
    }

    pub fn append(&mut self, other: &mut RawBufferVec<T>) {
        self.values.append(&mut other.values);
    }

    /// Changes the debugging label of the buffer.
    ///
    /// The next time the buffer is updated (via [`reserve`]), Bevy will inform
    /// the driver of the new label.
    pub fn set_label(&mut self, label: Option<&str>) {
        let label = label.map(str::to_string);

        if label != self.label {
            self.changed = true;
        }

        self.label = label;
    }

    /// Returns the label
    pub fn get_label(&self) -> Option<&str> {
        self.label.as_deref()
    }

    /// Creates a [`Buffer`] on the [`RenderDevice`] with size
    /// at least `std::mem::size_of::<T>() * capacity`, unless a such a buffer already exists.
    ///
    /// If a [`Buffer`] exists, but is too small, references to it will be discarded,
    /// and a new [`Buffer`] will be created. Any previously created [`Buffer`]s
    /// that are no longer referenced will be deleted by the [`RenderDevice`]
    /// once it is done using them (typically 1-2 frames).
    ///
    /// In addition to any [`BufferUsages`] provided when
    /// the `RawBufferVec` was created, the buffer on the [`RenderDevice`]
    /// is marked as [`BufferUsages::COPY_DST`](BufferUsages).
    pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
        let size = self.item_size * capacity;
        if capacity > self.capacity || (self.changed && size > 0) {
            self.capacity = capacity;
            self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
                label: self.label.as_deref(),
                size: size as BufferAddress,
                usage: BufferUsages::COPY_DST | self.buffer_usage,
                mapped_at_creation: false,
            }));
            self.changed = false;
        }
    }

    /// Queues writing of data from system RAM to VRAM using the [`RenderDevice`]
    /// and the provided [`RenderQueue`].
    ///
    /// Before queuing the write, a [`reserve`](RawBufferVec::reserve) operation
    /// is executed.
    pub fn write_buffer(&mut self, device: &RenderDevice, queue: &RenderQueue) {
        if self.values.is_empty() {
            return;
        }
        self.reserve(self.values.len(), device);
        if let Some(buffer) = &self.buffer {
            let range = 0..self.item_size * self.values.len();
            let bytes: &[u8] = must_cast_slice(&self.values);
            queue.write_buffer(buffer, 0, &bytes[range]);
        }
    }

    /// Reduces the length of the buffer.
    pub fn truncate(&mut self, len: usize) {
        self.values.truncate(len);
    }

    /// Removes all elements from the buffer.
    pub fn clear(&mut self) {
        self.values.clear();
    }

    pub fn values(&self) -> &Vec<T> {
        &self.values
    }

    pub fn values_mut(&mut self) -> &mut Vec<T> {
        &mut self.values
    }
}

impl<T: NoUninit> Extend<T> for RawBufferVec<T> {
    #[inline]
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.values.extend(iter);
    }
}

/// Like [`RawBufferVec`], but doesn't require that the data type `T` be
/// [`NoUninit`].
///
/// This is a high-performance data structure that you should use whenever
/// possible if your data is more complex than is suitable for [`RawBufferVec`].
/// The [`ShaderType`] trait from the `encase` library is used to ensure that
/// the data is correctly aligned for use by the GPU.
///
/// For performance reasons, unlike [`RawBufferVec`], this type doesn't allow
/// CPU access to the data after it's been added via [`BufferVec::push`]. If you
/// need CPU access to the data, consider another type, such as
/// [`StorageBuffer`].
pub struct BufferVec<T>
where
    T: ShaderType + WriteInto,
{
    data: Vec<u8>,
    buffer: Option<Buffer>,
    capacity: usize,
    buffer_usage: BufferUsages,
    label: Option<String>,
    label_changed: bool,
    phantom: PhantomData<T>,
}

impl<T> BufferVec<T>
where
    T: ShaderType + WriteInto,
{
    /// Creates a new [`BufferVec`] with the given [`BufferUsages`].
    pub const fn new(buffer_usage: BufferUsages) -> Self {
        Self {
            data: vec![],
            buffer: None,
            capacity: 0,
            buffer_usage,
            label: None,
            label_changed: false,
            phantom: PhantomData,
        }
    }

    /// Returns a handle to the buffer, if the data has been uploaded.
    #[inline]
    pub fn buffer(&self) -> Option<&Buffer> {
        self.buffer.as_ref()
    }

    /// Returns the binding for the buffer if the data has been uploaded.
    #[inline]
    pub fn binding(&self) -> Option<BindingResource> {
        Some(BindingResource::Buffer(
            self.buffer()?.as_entire_buffer_binding(),
        ))
    }

    /// Returns the amount of space that the GPU will use before reallocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.capacity
    }

    /// Returns the number of items that have been pushed to this buffer.
    #[inline]
    pub fn len(&self) -> usize {
        self.data.len() / u64::from(T::min_size()) as usize
    }

    /// Returns true if the buffer is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.data.is_empty()
    }

    /// Adds a new value and returns its index.
    pub fn push(&mut self, value: T) -> usize {
        let element_size = u64::from(T::min_size()) as usize;
        let offset = self.data.len();

        // TODO: Consider using unsafe code to push uninitialized, to prevent
        // the zeroing. It shows up in profiles.
        self.data.extend(iter::repeat(0).take(element_size));

        // Take a slice of the new data for `write_into` to use. This is
        // important: it hoists the bounds check up here so that the compiler
        // can eliminate all the bounds checks that `write_into` will emit.
        let mut dest = &mut self.data[offset..(offset + element_size)];
        value.write_into(&mut Writer::new(&value, &mut dest, 0).unwrap());

        offset / u64::from(T::min_size()) as usize
    }

    /// Changes the debugging label of the buffer.
    ///
    /// The next time the buffer is updated (via [`reserve`]), Bevy will inform
    /// the driver of the new label.
    pub fn set_label(&mut self, label: Option<&str>) {
        let label = label.map(str::to_string);

        if label != self.label {
            self.label_changed = true;
        }

        self.label = label;
    }

    /// Returns the label
    pub fn get_label(&self) -> Option<&str> {
        self.label.as_deref()
    }

    /// Creates a [`Buffer`] on the [`RenderDevice`] with size
    /// at least `std::mem::size_of::<T>() * capacity`, unless such a buffer already exists.
    ///
    /// If a [`Buffer`] exists, but is too small, references to it will be discarded,
    /// and a new [`Buffer`] will be created. Any previously created [`Buffer`]s
    /// that are no longer referenced will be deleted by the [`RenderDevice`]
    /// once it is done using them (typically 1-2 frames).
    ///
    /// In addition to any [`BufferUsages`] provided when
    /// the `BufferVec` was created, the buffer on the [`RenderDevice`]
    /// is marked as [`BufferUsages::COPY_DST`](BufferUsages).
    pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
        if capacity <= self.capacity && !self.label_changed {
            return;
        }

        self.capacity = capacity;
        let size = u64::from(T::min_size()) as usize * capacity;
        self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
            label: self.label.as_deref(),
            size: size as BufferAddress,
            usage: BufferUsages::COPY_DST | self.buffer_usage,
            mapped_at_creation: false,
        }));
        self.label_changed = false;
    }

    /// Queues writing of data from system RAM to VRAM using the [`RenderDevice`]
    /// and the provided [`RenderQueue`].
    ///
    /// Before queuing the write, a [`reserve`](BufferVec::reserve) operation is
    /// executed.
    pub fn write_buffer(&mut self, device: &RenderDevice, queue: &RenderQueue) {
        if self.data.is_empty() {
            return;
        }

        self.reserve(self.data.len() / u64::from(T::min_size()) as usize, device);

        let Some(buffer) = &self.buffer else { return };
        queue.write_buffer(buffer, 0, &self.data);
    }

    /// Reduces the length of the buffer.
    pub fn truncate(&mut self, len: usize) {
        self.data.truncate(u64::from(T::min_size()) as usize * len);
    }

    /// Removes all elements from the buffer.
    pub fn clear(&mut self) {
        self.data.clear();
    }
}

/// Like a [`BufferVec`], but only reserves space on the GPU for elements
/// instead of initializing them CPU-side.
///
/// This type is useful when you're accumulating "output slots" for a GPU
/// compute shader to write into.
///
/// The type `T` need not be [`NoUninit`], unlike [`RawBufferVec`]; it only has to
/// be [`GpuArrayBufferable`].
pub struct UninitBufferVec<T>
where
    T: GpuArrayBufferable,
{
    buffer: Option<Buffer>,
    len: usize,
    capacity: usize,
    item_size: usize,
    buffer_usage: BufferUsages,
    label: Option<String>,
    label_changed: bool,
    phantom: PhantomData<T>,
}

impl<T> UninitBufferVec<T>
where
    T: GpuArrayBufferable,
{
    /// Creates a new [`UninitBufferVec`] with the given [`BufferUsages`].
    pub const fn new(buffer_usage: BufferUsages) -> Self {
        Self {
            len: 0,
            buffer: None,
            capacity: 0,
            item_size: std::mem::size_of::<T>(),
            buffer_usage,
            label: None,
            label_changed: false,
            phantom: PhantomData,
        }
    }

    /// Returns the buffer, if allocated.
    #[inline]
    pub fn buffer(&self) -> Option<&Buffer> {
        self.buffer.as_ref()
    }

    /// Returns the binding for the buffer if the data has been uploaded.
    #[inline]
    pub fn binding(&self) -> Option<BindingResource> {
        Some(BindingResource::Buffer(
            self.buffer()?.as_entire_buffer_binding(),
        ))
    }

    /// Reserves space for one more element in the buffer and returns its index.
    pub fn add(&mut self) -> usize {
        let index = self.len;
        self.len += 1;
        index
    }

    /// Returns true if no elements have been added to this [`UninitBufferVec`].
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Removes all elements from the buffer.
    pub fn clear(&mut self) {
        self.len = 0;
    }

    /// Returns the length of the buffer.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Materializes the buffer on the GPU with space for `capacity` elements.
    ///
    /// If the buffer is already big enough, this function doesn't reallocate
    /// the buffer.
    pub fn reserve(&mut self, capacity: usize, device: &RenderDevice) {
        if capacity <= self.capacity && !self.label_changed {
            return;
        }

        self.capacity = capacity;
        let size = self.item_size * capacity;
        self.buffer = Some(device.create_buffer(&wgpu::BufferDescriptor {
            label: self.label.as_deref(),
            size: size as wgpu::BufferAddress,
            usage: BufferUsages::COPY_DST | self.buffer_usage,
            mapped_at_creation: false,
        }));

        self.label_changed = false;
    }

    /// Materializes the buffer on the GPU, with an appropriate size for the
    /// elements that have been pushed so far.
    pub fn write_buffer(&mut self, device: &RenderDevice) {
        if !self.is_empty() {
            self.reserve(self.len, device);
        }
    }
}