1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
use bevy_ecs::{prelude::Entity, world::World};
#[cfg(feature = "trace")]
use bevy_utils::tracing::info_span;
use bevy_utils::HashMap;

use smallvec::{smallvec, SmallVec};
use std::{borrow::Cow, collections::VecDeque};
use thiserror::Error;

use crate::{
    diagnostic::internal::{DiagnosticsRecorder, RenderDiagnosticsMutex},
    render_graph::{
        Edge, InternedRenderLabel, InternedRenderSubGraph, NodeRunError, NodeState, RenderGraph,
        RenderGraphContext, SlotLabel, SlotType, SlotValue,
    },
    renderer::{RenderContext, RenderDevice},
};

/// The [`RenderGraphRunner`] is responsible for executing a [`RenderGraph`].
///
/// It will run all nodes in the graph sequentially in the correct order (defined by the edges).
/// Each [`Node`](crate::render_graph::node::Node) can run any arbitrary code, but will generally
/// either send directly a [`CommandBuffer`] or a task that will asynchronously generate a [`CommandBuffer`]
///
/// After running the graph, the [`RenderGraphRunner`] will execute in parallel all the tasks to get
/// an ordered list of [`CommandBuffer`]s to execute. These [`CommandBuffer`] will be submitted to the GPU
/// sequentially in the order that the tasks were submitted. (which is the order of the [`RenderGraph`])
///
/// [`CommandBuffer`]: wgpu::CommandBuffer
pub(crate) struct RenderGraphRunner;

#[derive(Error, Debug)]
pub enum RenderGraphRunnerError {
    #[error(transparent)]
    NodeRunError(#[from] NodeRunError),
    #[error("node output slot not set (index {slot_index}, name {slot_name})")]
    EmptyNodeOutputSlot {
        type_name: &'static str,
        slot_index: usize,
        slot_name: Cow<'static, str>,
    },
    #[error("graph '{sub_graph:?}' could not be run because slot '{slot_name}' at index {slot_index} has no value")]
    MissingInput {
        slot_index: usize,
        slot_name: Cow<'static, str>,
        sub_graph: Option<InternedRenderSubGraph>,
    },
    #[error("attempted to use the wrong type for input slot")]
    MismatchedInputSlotType {
        slot_index: usize,
        label: SlotLabel,
        expected: SlotType,
        actual: SlotType,
    },
    #[error(
        "node (name: '{node_name:?}') has {slot_count} input slots, but was provided {value_count} values"
    )]
    MismatchedInputCount {
        node_name: InternedRenderLabel,
        slot_count: usize,
        value_count: usize,
    },
}

impl RenderGraphRunner {
    pub fn run(
        graph: &RenderGraph,
        render_device: RenderDevice,
        mut diagnostics_recorder: Option<DiagnosticsRecorder>,
        queue: &wgpu::Queue,
        adapter: &wgpu::Adapter,
        world: &World,
        finalizer: impl FnOnce(&mut wgpu::CommandEncoder),
    ) -> Result<Option<DiagnosticsRecorder>, RenderGraphRunnerError> {
        if let Some(recorder) = &mut diagnostics_recorder {
            recorder.begin_frame();
        }

        let mut render_context =
            RenderContext::new(render_device, adapter.get_info(), diagnostics_recorder);
        Self::run_graph(graph, None, &mut render_context, world, &[], None)?;
        finalizer(render_context.command_encoder());

        let (render_device, mut diagnostics_recorder) = {
            #[cfg(feature = "trace")]
            let _span = info_span!("submit_graph_commands").entered();

            let (commands, render_device, diagnostics_recorder) = render_context.finish();
            queue.submit(commands);

            (render_device, diagnostics_recorder)
        };

        if let Some(recorder) = &mut diagnostics_recorder {
            let render_diagnostics_mutex = world.resource::<RenderDiagnosticsMutex>().0.clone();
            recorder.finish_frame(&render_device, move |diagnostics| {
                *render_diagnostics_mutex.lock().expect("lock poisoned") = Some(diagnostics);
            });
        }

        Ok(diagnostics_recorder)
    }

    /// Runs the [`RenderGraph`] and all its sub-graphs sequentially, making sure that all nodes are
    /// run in the correct order. (a node only runs when all its dependencies have finished running)
    fn run_graph<'w>(
        graph: &RenderGraph,
        sub_graph: Option<InternedRenderSubGraph>,
        render_context: &mut RenderContext<'w>,
        world: &'w World,
        inputs: &[SlotValue],
        view_entity: Option<Entity>,
    ) -> Result<(), RenderGraphRunnerError> {
        let mut node_outputs: HashMap<InternedRenderLabel, SmallVec<[SlotValue; 4]>> =
            HashMap::default();
        #[cfg(feature = "trace")]
        let span = if let Some(label) = &sub_graph {
            info_span!("run_graph", name = format!("{label:?}"))
        } else {
            info_span!("run_graph", name = "main_graph")
        };
        #[cfg(feature = "trace")]
        let _guard = span.enter();

        // Queue up nodes without inputs, which can be run immediately
        let mut node_queue: VecDeque<&NodeState> = graph
            .iter_nodes()
            .filter(|node| node.input_slots.is_empty())
            .collect();

        // pass inputs into the graph
        if let Some(input_node) = graph.get_input_node() {
            let mut input_values: SmallVec<[SlotValue; 4]> = SmallVec::new();
            for (i, input_slot) in input_node.input_slots.iter().enumerate() {
                if let Some(input_value) = inputs.get(i) {
                    if input_slot.slot_type != input_value.slot_type() {
                        return Err(RenderGraphRunnerError::MismatchedInputSlotType {
                            slot_index: i,
                            actual: input_value.slot_type(),
                            expected: input_slot.slot_type,
                            label: input_slot.name.clone().into(),
                        });
                    }
                    input_values.push(input_value.clone());
                } else {
                    return Err(RenderGraphRunnerError::MissingInput {
                        slot_index: i,
                        slot_name: input_slot.name.clone(),
                        sub_graph,
                    });
                }
            }

            node_outputs.insert(input_node.label, input_values);

            for (_, node_state) in graph
                .iter_node_outputs(input_node.label)
                .expect("node exists")
            {
                node_queue.push_front(node_state);
            }
        }

        'handle_node: while let Some(node_state) = node_queue.pop_back() {
            // skip nodes that are already processed
            if node_outputs.contains_key(&node_state.label) {
                continue;
            }

            let mut slot_indices_and_inputs: SmallVec<[(usize, SlotValue); 4]> = SmallVec::new();
            // check if all dependencies have finished running
            for (edge, input_node) in graph
                .iter_node_inputs(node_state.label)
                .expect("node is in graph")
            {
                match edge {
                    Edge::SlotEdge {
                        output_index,
                        input_index,
                        ..
                    } => {
                        if let Some(outputs) = node_outputs.get(&input_node.label) {
                            slot_indices_and_inputs
                                .push((*input_index, outputs[*output_index].clone()));
                        } else {
                            node_queue.push_front(node_state);
                            continue 'handle_node;
                        }
                    }
                    Edge::NodeEdge { .. } => {
                        if !node_outputs.contains_key(&input_node.label) {
                            node_queue.push_front(node_state);
                            continue 'handle_node;
                        }
                    }
                }
            }

            // construct final sorted input list
            slot_indices_and_inputs.sort_by_key(|(index, _)| *index);
            let inputs: SmallVec<[SlotValue; 4]> = slot_indices_and_inputs
                .into_iter()
                .map(|(_, value)| value)
                .collect();

            if inputs.len() != node_state.input_slots.len() {
                return Err(RenderGraphRunnerError::MismatchedInputCount {
                    node_name: node_state.label,
                    slot_count: node_state.input_slots.len(),
                    value_count: inputs.len(),
                });
            }

            let mut outputs: SmallVec<[Option<SlotValue>; 4]> =
                smallvec![None; node_state.output_slots.len()];
            {
                let mut context = RenderGraphContext::new(graph, node_state, &inputs, &mut outputs);
                if let Some(view_entity) = view_entity {
                    context.set_view_entity(view_entity);
                }

                {
                    #[cfg(feature = "trace")]
                    let _span = info_span!("node", name = node_state.type_name).entered();

                    node_state.node.run(&mut context, render_context, world)?;
                }

                for run_sub_graph in context.finish() {
                    let sub_graph = graph
                        .get_sub_graph(run_sub_graph.sub_graph)
                        .expect("sub graph exists because it was validated when queued.");
                    Self::run_graph(
                        sub_graph,
                        Some(run_sub_graph.sub_graph),
                        render_context,
                        world,
                        &run_sub_graph.inputs,
                        run_sub_graph.view_entity,
                    )?;
                }
            }

            let mut values: SmallVec<[SlotValue; 4]> = SmallVec::new();
            for (i, output) in outputs.into_iter().enumerate() {
                if let Some(value) = output {
                    values.push(value);
                } else {
                    let empty_slot = node_state.output_slots.get_slot(i).unwrap();
                    return Err(RenderGraphRunnerError::EmptyNodeOutputSlot {
                        type_name: node_state.type_name,
                        slot_index: i,
                        slot_name: empty_slot.name.clone(),
                    });
                }
            }
            node_outputs.insert(node_state.label, values);

            for (_, node_state) in graph
                .iter_node_outputs(node_state.label)
                .expect("node exists")
            {
                node_queue.push_front(node_state);
            }
        }

        Ok(())
    }
}