1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
use super::TaskPool;

/// Provides functions for mapping read-only slices across a provided [`TaskPool`].
pub trait ParallelSlice<T: Sync>: AsRef<[T]> {
    /// Splits the slice in chunks of size `chunks_size` or less and maps the chunks
    /// in parallel across the provided `task_pool`. One task is spawned in the task pool
    /// for every chunk.
    ///
    /// The iteration function takes the index of the chunk in the original slice as the
    /// first argument, and the chunk as the second argument.
    ///
    /// Returns a `Vec` of the mapped results in the same order as the input.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_tasks::prelude::*;
    /// # use bevy_tasks::TaskPool;
    /// let task_pool = TaskPool::new();
    /// let counts = (0..10000).collect::<Vec<u32>>();
    /// let incremented = counts.par_chunk_map(&task_pool, 100, |_index, chunk| {
    ///   let mut results = Vec::new();
    ///   for count in chunk {
    ///     results.push(*count + 2);
    ///   }
    ///   results
    /// });
    /// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
    /// # assert_eq!(flattened, (2..10002).collect::<Vec<u32>>());
    /// ```
    ///
    /// # See Also
    ///
    /// - [`ParallelSliceMut::par_chunk_map_mut`] for mapping mutable slices.
    /// - [`ParallelSlice::par_splat_map`] for mapping when a specific chunk size is unknown.
    fn par_chunk_map<F, R>(&self, task_pool: &TaskPool, chunk_size: usize, f: F) -> Vec<R>
    where
        F: Fn(usize, &[T]) -> R + Send + Sync,
        R: Send + 'static,
    {
        let slice = self.as_ref();
        let f = &f;
        task_pool.scope(|scope| {
            for (index, chunk) in slice.chunks(chunk_size).enumerate() {
                scope.spawn(async move { f(index, chunk) });
            }
        })
    }

    /// Splits the slice into a maximum of `max_tasks` chunks, and maps the chunks in parallel
    /// across the provided `task_pool`. One task is spawned in the task pool for every chunk.
    ///
    /// If `max_tasks` is `None`, this function will attempt to use one chunk per thread in
    /// `task_pool`.
    ///
    /// The iteration function takes the index of the chunk in the original slice as the
    /// first argument, and the chunk as the second argument.
    ///
    /// Returns a `Vec` of the mapped results in the same order as the input.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_tasks::prelude::*;
    /// # use bevy_tasks::TaskPool;
    /// let task_pool = TaskPool::new();
    /// let counts = (0..10000).collect::<Vec<u32>>();
    /// let incremented = counts.par_splat_map(&task_pool, None, |_index, chunk| {
    ///   let mut results = Vec::new();
    ///   for count in chunk {
    ///     results.push(*count + 2);
    ///   }
    ///   results
    /// });
    /// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
    /// # assert_eq!(flattened, (2..10002).collect::<Vec<u32>>());
    /// ```
    ///
    /// # See Also
    ///
    /// [`ParallelSliceMut::par_splat_map_mut`] for mapping mutable slices.
    /// [`ParallelSlice::par_chunk_map`] for mapping when a specific chunk size is desirable.
    fn par_splat_map<F, R>(&self, task_pool: &TaskPool, max_tasks: Option<usize>, f: F) -> Vec<R>
    where
        F: Fn(usize, &[T]) -> R + Send + Sync,
        R: Send + 'static,
    {
        let slice = self.as_ref();
        let chunk_size = std::cmp::max(
            1,
            std::cmp::max(
                slice.len() / task_pool.thread_num(),
                slice.len() / max_tasks.unwrap_or(usize::MAX),
            ),
        );

        slice.par_chunk_map(task_pool, chunk_size, f)
    }
}

impl<S, T: Sync> ParallelSlice<T> for S where S: AsRef<[T]> {}

/// Provides functions for mapping mutable slices across a provided [`TaskPool`].
pub trait ParallelSliceMut<T: Send>: AsMut<[T]> {
    /// Splits the slice in chunks of size `chunks_size` or less and maps the chunks
    /// in parallel across the provided `task_pool`. One task is spawned in the task pool
    /// for every chunk.
    ///
    /// The iteration function takes the index of the chunk in the original slice as the
    /// first argument, and the chunk as the second argument.
    ///
    /// Returns a `Vec` of the mapped results in the same order as the input.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_tasks::prelude::*;
    /// # use bevy_tasks::TaskPool;
    /// let task_pool = TaskPool::new();
    /// let mut counts = (0..10000).collect::<Vec<u32>>();
    /// let incremented = counts.par_chunk_map_mut(&task_pool, 100, |_index, chunk| {
    ///   let mut results = Vec::new();
    ///   for count in chunk {
    ///     *count += 5;
    ///     results.push(*count - 2);
    ///   }
    ///   results
    /// });
    ///
    /// assert_eq!(counts, (5..10005).collect::<Vec<u32>>());
    /// # let flattened: Vec<_> = incremented.into_iter().flatten().collect();
    /// # assert_eq!(flattened, (3..10003).collect::<Vec<u32>>());
    /// ```
    ///
    /// # See Also
    ///
    /// [`ParallelSlice::par_chunk_map`] for mapping immutable slices.
    /// [`ParallelSliceMut::par_splat_map_mut`] for mapping when a specific chunk size is unknown.
    fn par_chunk_map_mut<F, R>(&mut self, task_pool: &TaskPool, chunk_size: usize, f: F) -> Vec<R>
    where
        F: Fn(usize, &mut [T]) -> R + Send + Sync,
        R: Send + 'static,
    {
        let slice = self.as_mut();
        let f = &f;
        task_pool.scope(|scope| {
            for (index, chunk) in slice.chunks_mut(chunk_size).enumerate() {
                scope.spawn(async move { f(index, chunk) });
            }
        })
    }

    /// Splits the slice into a maximum of `max_tasks` chunks, and maps the chunks in parallel
    /// across the provided `task_pool`. One task is spawned in the task pool for every chunk.
    ///
    /// If `max_tasks` is `None`, this function will attempt to use one chunk per thread in
    /// `task_pool`.
    ///
    /// The iteration function takes the index of the chunk in the original slice as the
    /// first argument, and the chunk as the second argument.
    ///
    /// Returns a `Vec` of the mapped results in the same order as the input.
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_tasks::prelude::*;
    /// # use bevy_tasks::TaskPool;
    /// let task_pool = TaskPool::new();
    /// let mut counts = (0..10000).collect::<Vec<u32>>();
    /// let incremented = counts.par_splat_map_mut(&task_pool, None, |_index, chunk| {
    ///   let mut results = Vec::new();
    ///   for count in chunk {
    ///     *count += 5;
    ///     results.push(*count - 2);
    ///   }
    ///   results
    /// });
    ///
    /// assert_eq!(counts, (5..10005).collect::<Vec<u32>>());
    /// # let flattened: Vec<_> = incremented.into_iter().flatten().collect::<Vec<u32>>();
    /// # assert_eq!(flattened, (3..10003).collect::<Vec<u32>>());
    /// ```
    ///
    /// # See Also
    ///
    /// [`ParallelSlice::par_splat_map`] for mapping immutable slices.
    /// [`ParallelSliceMut::par_chunk_map_mut`] for mapping when a specific chunk size is desirable.
    fn par_splat_map_mut<F, R>(
        &mut self,
        task_pool: &TaskPool,
        max_tasks: Option<usize>,
        f: F,
    ) -> Vec<R>
    where
        F: Fn(usize, &mut [T]) -> R + Send + Sync,
        R: Send + 'static,
    {
        let mut slice = self.as_mut();
        let chunk_size = std::cmp::max(
            1,
            std::cmp::max(
                slice.len() / task_pool.thread_num(),
                slice.len() / max_tasks.unwrap_or(usize::MAX),
            ),
        );

        slice.par_chunk_map_mut(task_pool, chunk_size, f)
    }
}

impl<S, T: Send> ParallelSliceMut<T> for S where S: AsMut<[T]> {}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn test_par_chunks_map() {
        let v = vec![42; 1000];
        let task_pool = TaskPool::new();
        let outputs = v.par_splat_map(&task_pool, None, |_, numbers| -> i32 {
            numbers.iter().sum()
        });

        let mut sum = 0;
        for output in outputs {
            sum += output;
        }

        assert_eq!(sum, 1000 * 42);
    }

    #[test]
    fn test_par_chunks_map_mut() {
        let mut v = vec![42; 1000];
        let task_pool = TaskPool::new();

        let outputs = v.par_splat_map_mut(&task_pool, None, |_, numbers| -> i32 {
            for number in numbers.iter_mut() {
                *number *= 2;
            }
            numbers.iter().sum()
        });

        let mut sum = 0;
        for output in outputs {
            sum += output;
        }

        assert_eq!(sum, 1000 * 42 * 2);
        assert_eq!(v[0], 84);
    }

    #[test]
    fn test_par_chunks_map_index() {
        let v = vec![1; 1000];
        let task_pool = TaskPool::new();
        let outputs = v.par_chunk_map(&task_pool, 100, |index, numbers| -> i32 {
            numbers.iter().sum::<i32>() * index as i32
        });

        assert_eq!(outputs.iter().sum::<i32>(), 100 * (9 * 10) / 2);
    }
}