bevy_time/time.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
use bevy_ecs::system::Resource;
use bevy_utils::Duration;
#[cfg(feature = "bevy_reflect")]
use {
bevy_ecs::reflect::ReflectResource,
bevy_reflect::{std_traits::ReflectDefault, Reflect},
};
/// A generic clock resource that tracks how much it has advanced since its
/// previous update and since its creation.
///
/// Multiple instances of this resource are inserted automatically by
/// [`TimePlugin`](crate::TimePlugin):
///
/// - [`Time<Real>`](crate::real::Real) tracks real wall-clock time elapsed.
/// - [`Time<Virtual>`](crate::virt::Virtual) tracks virtual game time that may
/// be paused or scaled.
/// - [`Time<Fixed>`](crate::fixed::Fixed) tracks fixed timesteps based on
/// virtual time.
/// - [`Time`] is a generic clock that corresponds to "current" or "default"
/// time for systems. It contains [`Time<Virtual>`](crate::virt::Virtual)
/// except inside the [`FixedMain`](bevy_app::FixedMain) schedule when it
/// contains [`Time<Fixed>`](crate::fixed::Fixed).
///
/// The time elapsed since the previous time this clock was advanced is saved as
/// [`delta()`](Time::delta) and the total amount of time the clock has advanced
/// is saved as [`elapsed()`](Time::elapsed). Both are represented as exact
/// [`Duration`] values with fixed nanosecond precision. The clock does not
/// support time moving backwards, but it can be updated with [`Duration::ZERO`]
/// which will set [`delta()`](Time::delta) to zero.
///
/// These values are also available in seconds as `f32` via
/// [`delta_secs()`](Time::delta_secs) and
/// [`elapsed_secs()`](Time::elapsed_secs), and also in seconds as `f64`
/// via [`delta_secs_f64()`](Time::delta_secs_f64) and
/// [`elapsed_secs_f64()`](Time::elapsed_secs_f64).
///
/// Since [`elapsed_secs()`](Time::elapsed_secs) will grow constantly and
/// is `f32`, it will exhibit gradual precision loss. For applications that
/// require an `f32` value but suffer from gradual precision loss there is
/// [`elapsed_secs_wrapped()`](Time::elapsed_secs_wrapped) available. The
/// same wrapped value is also available as [`Duration`] and `f64` for
/// consistency. The wrap period is by default 1 hour, and can be set by
/// [`set_wrap_period()`](Time::set_wrap_period).
///
/// # Accessing clocks
///
/// By default, any systems requiring current [`delta()`](Time::delta) or
/// [`elapsed()`](Time::elapsed) should use `Res<Time>` to access the default
/// time configured for the program. By default, this refers to
/// [`Time<Virtual>`](crate::virt::Virtual) except during the
/// [`FixedMain`](bevy_app::FixedMain) schedule when it refers to
/// [`Time<Fixed>`](crate::fixed::Fixed). This ensures your system can be used
/// either in [`Update`](bevy_app::Update) or
/// [`FixedUpdate`](bevy_app::FixedUpdate) schedule depending on what is needed.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn ambivalent_system(time: Res<Time>) {
/// println!("this how I see time: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// If your system needs to react based on real time (wall clock time), like for
/// user interfaces, it should use `Res<Time<Real>>`. The
/// [`delta()`](Time::delta) and [`elapsed()`](Time::elapsed) values will always
/// correspond to real time and will not be affected by pause, time scaling or
/// other tweaks.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn real_time_system(time: Res<Time<Real>>) {
/// println!("this will always be real time: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// If your system specifically needs to access fixed timestep clock, even when
/// placed in `Update` schedule, you should use `Res<Time<Fixed>>`. The
/// [`delta()`](Time::delta) and [`elapsed()`](Time::elapsed) values will
/// correspond to the latest fixed timestep that has been run.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn fixed_time_system(time: Res<Time<Fixed>>) {
/// println!("this will always be the last executed fixed timestep: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// Finally, if your system specifically needs to know the current virtual game
/// time, even if placed inside [`FixedUpdate`](bevy_app::FixedUpdate), for
/// example to know if the game is [`was_paused()`](Time::was_paused) or to use
/// [`effective_speed()`](Time::effective_speed), you can use
/// `Res<Time<Virtual>>`. However, if the system is placed in
/// [`FixedUpdate`](bevy_app::FixedUpdate), extra care must be used because your
/// system might be run multiple times with the same [`delta()`](Time::delta)
/// and [`elapsed()`](Time::elapsed) values as the virtual game time has not
/// changed between the iterations.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn fixed_time_system(time: Res<Time<Virtual>>) {
/// println!("this will be virtual time for this update: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// println!("also the relative speed of the game is now {}", time.effective_speed());
/// }
/// ```
///
/// If you need to change the settings for any of the clocks, for example to
/// [`pause()`](Time::pause) the game, you should use `ResMut<Time<Virtual>>`.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// #[derive(Event)]
/// struct PauseEvent(bool);
///
/// fn pause_system(mut time: ResMut<Time<Virtual>>, mut events: EventReader<PauseEvent>) {
/// for ev in events.read() {
/// if ev.0 {
/// time.pause();
/// } else {
/// time.unpause();
/// }
/// }
/// }
/// ```
///
/// # Adding custom clocks
///
/// New custom clocks can be created by creating your own struct as a context
/// and passing it to [`new_with()`](Time::new_with). These clocks can be
/// inserted as resources as normal and then accessed by systems. You can use
/// the [`advance_by()`](Time::advance_by) or [`advance_to()`](Time::advance_to)
/// methods to move the clock forwards based on your own logic.
///
/// If you want to add methods for your time instance and they require access to
/// both your context and the generic time part, it's probably simplest to add a
/// custom trait for them and implement it for `Time<Custom>`.
///
/// Your context struct will need to implement the [`Default`] trait because
/// [`Time`] structures support reflection. It also makes initialization trivial
/// by being able to call `app.init_resource::<Time<Custom>>()`.
///
/// You can also replace the "generic" `Time` clock resource if the "default"
/// time for your game should not be the default virtual time provided. You can
/// get a "generic" snapshot of your clock by calling `as_generic()` and then
/// overwrite the [`Time`] resource with it. The default systems added by
/// [`TimePlugin`](crate::TimePlugin) will overwrite the [`Time`] clock during
/// [`First`](bevy_app::First) and [`FixedUpdate`](bevy_app::FixedUpdate)
/// schedules.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// # use bevy_utils::Instant;
/// #
/// #[derive(Debug)]
/// struct Custom {
/// last_external_time: Instant,
/// }
///
/// impl Default for Custom {
/// fn default() -> Self {
/// Self {
/// last_external_time: Instant::now(),
/// }
/// }
/// }
///
/// trait CustomTime {
/// fn update_from_external(&mut self, instant: Instant);
/// }
///
/// impl CustomTime for Time<Custom> {
/// fn update_from_external(&mut self, instant: Instant) {
/// let delta = instant - self.context().last_external_time;
/// self.advance_by(delta);
/// self.context_mut().last_external_time = instant;
/// }
/// }
/// ```
#[derive(Resource, Debug, Copy, Clone)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Resource, Default))]
pub struct Time<T: Default = ()> {
context: T,
wrap_period: Duration,
delta: Duration,
delta_secs: f32,
delta_secs_f64: f64,
elapsed: Duration,
elapsed_secs: f32,
elapsed_secs_f64: f64,
elapsed_wrapped: Duration,
elapsed_secs_wrapped: f32,
elapsed_secs_wrapped_f64: f64,
}
impl<T: Default> Time<T> {
const DEFAULT_WRAP_PERIOD: Duration = Duration::from_secs(3600); // 1 hour
/// Create a new clock from context with [`Self::delta`] and [`Self::elapsed`] starting from
/// zero.
pub fn new_with(context: T) -> Self {
Self {
context,
..Default::default()
}
}
/// Advance this clock by adding a `delta` duration to it.
///
/// The added duration will be returned by [`Self::delta`] and
/// [`Self::elapsed`] will be increased by the duration. Adding
/// [`Duration::ZERO`] is allowed and will set [`Self::delta`] to zero.
pub fn advance_by(&mut self, delta: Duration) {
self.delta = delta;
self.delta_secs = self.delta.as_secs_f32();
self.delta_secs_f64 = self.delta.as_secs_f64();
self.elapsed += delta;
self.elapsed_secs = self.elapsed.as_secs_f32();
self.elapsed_secs_f64 = self.elapsed.as_secs_f64();
self.elapsed_wrapped = duration_rem(self.elapsed, self.wrap_period);
self.elapsed_secs_wrapped = self.elapsed_wrapped.as_secs_f32();
self.elapsed_secs_wrapped_f64 = self.elapsed_wrapped.as_secs_f64();
}
/// Advance this clock to a specific `elapsed` time.
///
/// [`Self::delta()`] will return the amount of time the clock was advanced
/// and [`Self::elapsed()`] will be the `elapsed` value passed in. Cannot be
/// used to move time backwards.
///
/// # Panics
///
/// Panics if `elapsed` is less than `Self::elapsed()`.
pub fn advance_to(&mut self, elapsed: Duration) {
assert!(
elapsed >= self.elapsed,
"tried to move time backwards to an earlier elapsed moment"
);
self.advance_by(elapsed - self.elapsed);
}
/// Returns the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped).
///
/// **Note:** The default modulus is one hour.
#[inline]
pub fn wrap_period(&self) -> Duration {
self.wrap_period
}
/// Sets the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped).
///
/// **Note:** This will not take effect until the next update.
///
/// # Panics
///
/// Panics if `wrap_period` is a zero-length duration.
#[inline]
pub fn set_wrap_period(&mut self, wrap_period: Duration) {
assert!(!wrap_period.is_zero(), "division by zero");
self.wrap_period = wrap_period;
}
/// Returns how much time has advanced since the last [`update`](#method.update), as a
/// [`Duration`].
#[inline]
pub fn delta(&self) -> Duration {
self.delta
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`f32`]
/// seconds.
#[inline]
pub fn delta_secs(&self) -> f32 {
self.delta_secs
}
/// Returns how much time has advanced since the last [`update`](#method.update), as [`f64`]
/// seconds.
#[inline]
pub fn delta_secs_f64(&self) -> f64 {
self.delta_secs_f64
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`Duration`].
#[inline]
pub fn elapsed(&self) -> Duration {
self.elapsed
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`f32`] seconds.
///
/// **Note:** This is a monotonically increasing value. Its precision will degrade over time.
/// If you need an `f32` but that precision loss is unacceptable,
/// use [`elapsed_secs_wrapped`](#method.elapsed_secs_wrapped).
#[inline]
pub fn elapsed_secs(&self) -> f32 {
self.elapsed_secs
}
/// Returns how much time has advanced since [`startup`](#method.startup), as [`f64`] seconds.
#[inline]
pub fn elapsed_secs_f64(&self) -> f64 {
self.elapsed_secs_f64
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`Duration`].
#[inline]
pub fn elapsed_wrapped(&self) -> Duration {
self.elapsed_wrapped
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f32`] seconds.
///
/// This method is intended for applications (e.g. shaders) that require an [`f32`] value but
/// suffer from the gradual precision loss of [`elapsed_secs`](#method.elapsed_secs).
#[inline]
pub fn elapsed_secs_wrapped(&self) -> f32 {
self.elapsed_secs_wrapped
}
/// Returns how much time has advanced since [`startup`](#method.startup) modulo
/// the [`wrap_period`](#method.wrap_period), as [`f64`] seconds.
#[inline]
pub fn elapsed_secs_wrapped_f64(&self) -> f64 {
self.elapsed_secs_wrapped_f64
}
/// Returns a reference to the context of this specific clock.
#[inline]
pub fn context(&self) -> &T {
&self.context
}
/// Returns a mutable reference to the context of this specific clock.
#[inline]
pub fn context_mut(&mut self) -> &mut T {
&mut self.context
}
/// Returns a copy of this clock as fully generic clock without context.
#[inline]
pub fn as_generic(&self) -> Time<()> {
Time {
context: (),
wrap_period: self.wrap_period,
delta: self.delta,
delta_secs: self.delta_secs,
delta_secs_f64: self.delta_secs_f64,
elapsed: self.elapsed,
elapsed_secs: self.elapsed_secs,
elapsed_secs_f64: self.elapsed_secs_f64,
elapsed_wrapped: self.elapsed_wrapped,
elapsed_secs_wrapped: self.elapsed_secs_wrapped,
elapsed_secs_wrapped_f64: self.elapsed_secs_wrapped_f64,
}
}
}
impl<T: Default> Default for Time<T> {
fn default() -> Self {
Self {
context: Default::default(),
wrap_period: Self::DEFAULT_WRAP_PERIOD,
delta: Duration::ZERO,
delta_secs: 0.0,
delta_secs_f64: 0.0,
elapsed: Duration::ZERO,
elapsed_secs: 0.0,
elapsed_secs_f64: 0.0,
elapsed_wrapped: Duration::ZERO,
elapsed_secs_wrapped: 0.0,
elapsed_secs_wrapped_f64: 0.0,
}
}
}
fn duration_rem(dividend: Duration, divisor: Duration) -> Duration {
// `Duration` does not have a built-in modulo operation
let quotient = (dividend.as_nanos() / divisor.as_nanos()) as u32;
dividend - (quotient * divisor)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_initial_state() {
let time: Time = Time::default();
assert_eq!(time.wrap_period(), Time::<()>::DEFAULT_WRAP_PERIOD);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_secs(), 0.0);
assert_eq!(time.delta_secs_f64(), 0.0);
assert_eq!(time.elapsed(), Duration::ZERO);
assert_eq!(time.elapsed_secs(), 0.0);
assert_eq!(time.elapsed_secs_f64(), 0.0);
assert_eq!(time.elapsed_wrapped(), Duration::ZERO);
assert_eq!(time.elapsed_secs_wrapped(), 0.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);
}
#[test]
fn test_advance_by() {
let mut time: Time = Time::default();
time.advance_by(Duration::from_millis(250));
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.delta_secs(), 0.25);
assert_eq!(time.delta_secs_f64(), 0.25);
assert_eq!(time.elapsed(), Duration::from_millis(250));
assert_eq!(time.elapsed_secs(), 0.25);
assert_eq!(time.elapsed_secs_f64(), 0.25);
time.advance_by(Duration::from_millis(500));
assert_eq!(time.delta(), Duration::from_millis(500));
assert_eq!(time.delta_secs(), 0.5);
assert_eq!(time.delta_secs_f64(), 0.5);
assert_eq!(time.elapsed(), Duration::from_millis(750));
assert_eq!(time.elapsed_secs(), 0.75);
assert_eq!(time.elapsed_secs_f64(), 0.75);
time.advance_by(Duration::ZERO);
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_secs(), 0.0);
assert_eq!(time.delta_secs_f64(), 0.0);
assert_eq!(time.elapsed(), Duration::from_millis(750));
assert_eq!(time.elapsed_secs(), 0.75);
assert_eq!(time.elapsed_secs_f64(), 0.75);
}
#[test]
fn test_advance_to() {
let mut time: Time = Time::default();
time.advance_to(Duration::from_millis(250));
assert_eq!(time.delta(), Duration::from_millis(250));
assert_eq!(time.delta_secs(), 0.25);
assert_eq!(time.delta_secs_f64(), 0.25);
assert_eq!(time.elapsed(), Duration::from_millis(250));
assert_eq!(time.elapsed_secs(), 0.25);
assert_eq!(time.elapsed_secs_f64(), 0.25);
time.advance_to(Duration::from_millis(750));
assert_eq!(time.delta(), Duration::from_millis(500));
assert_eq!(time.delta_secs(), 0.5);
assert_eq!(time.delta_secs_f64(), 0.5);
assert_eq!(time.elapsed(), Duration::from_millis(750));
assert_eq!(time.elapsed_secs(), 0.75);
assert_eq!(time.elapsed_secs_f64(), 0.75);
time.advance_to(Duration::from_millis(750));
assert_eq!(time.delta(), Duration::ZERO);
assert_eq!(time.delta_secs(), 0.0);
assert_eq!(time.delta_secs_f64(), 0.0);
assert_eq!(time.elapsed(), Duration::from_millis(750));
assert_eq!(time.elapsed_secs(), 0.75);
assert_eq!(time.elapsed_secs_f64(), 0.75);
}
#[test]
#[should_panic]
fn test_advance_to_backwards_panics() {
let mut time: Time = Time::default();
time.advance_to(Duration::from_millis(750));
time.advance_to(Duration::from_millis(250));
}
#[test]
fn test_wrapping() {
let mut time: Time = Time::default();
time.set_wrap_period(Duration::from_secs(3));
time.advance_by(Duration::from_secs(2));
assert_eq!(time.elapsed_wrapped(), Duration::from_secs(2));
assert_eq!(time.elapsed_secs_wrapped(), 2.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 2.0);
time.advance_by(Duration::from_secs(2));
assert_eq!(time.elapsed_wrapped(), Duration::from_secs(1));
assert_eq!(time.elapsed_secs_wrapped(), 1.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 1.0);
time.advance_by(Duration::from_secs(2));
assert_eq!(time.elapsed_wrapped(), Duration::ZERO);
assert_eq!(time.elapsed_secs_wrapped(), 0.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);
time.advance_by(Duration::new(3, 250_000_000));
assert_eq!(time.elapsed_wrapped(), Duration::from_millis(250));
assert_eq!(time.elapsed_secs_wrapped(), 0.25);
assert_eq!(time.elapsed_secs_wrapped_f64(), 0.25);
}
#[test]
fn test_wrapping_change() {
let mut time: Time = Time::default();
time.set_wrap_period(Duration::from_secs(5));
time.advance_by(Duration::from_secs(8));
assert_eq!(time.elapsed_wrapped(), Duration::from_secs(3));
assert_eq!(time.elapsed_secs_wrapped(), 3.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 3.0);
time.set_wrap_period(Duration::from_secs(2));
assert_eq!(time.elapsed_wrapped(), Duration::from_secs(3));
assert_eq!(time.elapsed_secs_wrapped(), 3.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 3.0);
time.advance_by(Duration::ZERO);
// Time will wrap to modulo duration from full `elapsed()`, not to what
// is left in `elapsed_wrapped()`. This test of values is here to ensure
// that we notice if we change that behavior.
assert_eq!(time.elapsed_wrapped(), Duration::from_secs(0));
assert_eq!(time.elapsed_secs_wrapped(), 0.0);
assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);
}
}