bevy_time/
time.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
use bevy_ecs::system::Resource;
use bevy_utils::Duration;
#[cfg(feature = "bevy_reflect")]
use {
    bevy_ecs::reflect::ReflectResource,
    bevy_reflect::{std_traits::ReflectDefault, Reflect},
};

/// A generic clock resource that tracks how much it has advanced since its
/// previous update and since its creation.
///
/// Multiple instances of this resource are inserted automatically by
/// [`TimePlugin`](crate::TimePlugin):
///
/// - [`Time<Real>`](crate::real::Real) tracks real wall-clock time elapsed.
/// - [`Time<Virtual>`](crate::virt::Virtual) tracks virtual game time that may
///   be paused or scaled.
/// - [`Time<Fixed>`](crate::fixed::Fixed) tracks fixed timesteps based on
///   virtual time.
/// - [`Time`] is a generic clock that corresponds to "current" or "default"
///   time for systems. It contains [`Time<Virtual>`](crate::virt::Virtual)
///   except inside the [`FixedMain`](bevy_app::FixedMain) schedule when it
///   contains [`Time<Fixed>`](crate::fixed::Fixed).
///
/// The time elapsed since the previous time this clock was advanced is saved as
/// [`delta()`](Time::delta) and the total amount of time the clock has advanced
/// is saved as [`elapsed()`](Time::elapsed). Both are represented as exact
/// [`Duration`] values with fixed nanosecond precision. The clock does not
/// support time moving backwards, but it can be updated with [`Duration::ZERO`]
/// which will set [`delta()`](Time::delta) to zero.
///
/// These values are also available in seconds as `f32` via
/// [`delta_secs()`](Time::delta_secs) and
/// [`elapsed_secs()`](Time::elapsed_secs), and also in seconds as `f64`
/// via [`delta_secs_f64()`](Time::delta_secs_f64) and
/// [`elapsed_secs_f64()`](Time::elapsed_secs_f64).
///
/// Since [`elapsed_secs()`](Time::elapsed_secs) will grow constantly and
/// is `f32`, it will exhibit gradual precision loss. For applications that
/// require an `f32` value but suffer from gradual precision loss there is
/// [`elapsed_secs_wrapped()`](Time::elapsed_secs_wrapped) available. The
/// same wrapped value is also available as [`Duration`] and `f64` for
/// consistency. The wrap period is by default 1 hour, and can be set by
/// [`set_wrap_period()`](Time::set_wrap_period).
///
/// # Accessing clocks
///
/// By default, any systems requiring current [`delta()`](Time::delta) or
/// [`elapsed()`](Time::elapsed) should use `Res<Time>` to access the default
/// time configured for the program. By default, this refers to
/// [`Time<Virtual>`](crate::virt::Virtual) except during the
/// [`FixedMain`](bevy_app::FixedMain) schedule when it refers to
/// [`Time<Fixed>`](crate::fixed::Fixed). This ensures your system can be used
/// either in [`Update`](bevy_app::Update) or
/// [`FixedUpdate`](bevy_app::FixedUpdate) schedule depending on what is needed.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn ambivalent_system(time: Res<Time>) {
///     println!("this how I see time: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// If your system needs to react based on real time (wall clock time), like for
/// user interfaces, it should use `Res<Time<Real>>`. The
/// [`delta()`](Time::delta) and [`elapsed()`](Time::elapsed) values will always
/// correspond to real time and will not be affected by pause, time scaling or
/// other tweaks.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn real_time_system(time: Res<Time<Real>>) {
///     println!("this will always be real time: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// If your system specifically needs to access fixed timestep clock, even when
/// placed in `Update` schedule, you should use `Res<Time<Fixed>>`. The
/// [`delta()`](Time::delta) and [`elapsed()`](Time::elapsed) values will
/// correspond to the latest fixed timestep that has been run.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn fixed_time_system(time: Res<Time<Fixed>>) {
///     println!("this will always be the last executed fixed timestep: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
/// }
/// ```
///
/// Finally, if your system specifically needs to know the current virtual game
/// time, even if placed inside [`FixedUpdate`](bevy_app::FixedUpdate), for
/// example to know if the game is [`was_paused()`](Time::was_paused) or to use
/// [`effective_speed()`](Time::effective_speed), you can use
/// `Res<Time<Virtual>>`. However, if the system is placed in
/// [`FixedUpdate`](bevy_app::FixedUpdate), extra care must be used because your
/// system might be run multiple times with the same [`delta()`](Time::delta)
/// and [`elapsed()`](Time::elapsed) values as the virtual game time has not
/// changed between the iterations.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// fn fixed_time_system(time: Res<Time<Virtual>>) {
///     println!("this will be virtual time for this update: delta {:?}, elapsed {:?}", time.delta(), time.elapsed());
///     println!("also the relative speed of the game is now {}", time.effective_speed());
/// }
/// ```
///
/// If you need to change the settings for any of the clocks, for example to
/// [`pause()`](Time::pause) the game, you should use `ResMut<Time<Virtual>>`.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// #
/// #[derive(Event)]
/// struct PauseEvent(bool);
///
/// fn pause_system(mut time: ResMut<Time<Virtual>>, mut events: EventReader<PauseEvent>) {
///     for ev in events.read() {
///         if ev.0 {
///             time.pause();
///         } else {
///             time.unpause();
///         }
///     }
/// }
/// ```
///
/// # Adding custom clocks
///
/// New custom clocks can be created by creating your own struct as a context
/// and passing it to [`new_with()`](Time::new_with). These clocks can be
/// inserted as resources as normal and then accessed by systems. You can use
/// the [`advance_by()`](Time::advance_by) or [`advance_to()`](Time::advance_to)
/// methods to move the clock forwards based on your own logic.
///
/// If you want to add methods for your time instance and they require access to
/// both your context and the generic time part, it's probably simplest to add a
/// custom trait for them and implement it for `Time<Custom>`.
///
/// Your context struct will need to implement the [`Default`] trait because
/// [`Time`] structures support reflection. It also makes initialization trivial
/// by being able to call `app.init_resource::<Time<Custom>>()`.
///
/// You can also replace the "generic" `Time` clock resource if the "default"
/// time for your game should not be the default virtual time provided. You can
/// get a "generic" snapshot of your clock by calling `as_generic()` and then
/// overwrite the [`Time`] resource with it. The default systems added by
/// [`TimePlugin`](crate::TimePlugin) will overwrite the [`Time`] clock during
/// [`First`](bevy_app::First) and [`FixedUpdate`](bevy_app::FixedUpdate)
/// schedules.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # use bevy_time::prelude::*;
/// # use bevy_utils::Instant;
/// #
/// #[derive(Debug)]
/// struct Custom {
///     last_external_time: Instant,
/// }
///
/// impl Default for Custom {
///     fn default() -> Self {
///         Self {
///             last_external_time: Instant::now(),
///         }
///     }
/// }
///
/// trait CustomTime {
///     fn update_from_external(&mut self, instant: Instant);
/// }
///
/// impl CustomTime for Time<Custom> {
///     fn update_from_external(&mut self, instant: Instant) {
///          let delta = instant - self.context().last_external_time;
///          self.advance_by(delta);
///          self.context_mut().last_external_time = instant;
///     }
/// }
/// ```
#[derive(Resource, Debug, Copy, Clone)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Resource, Default))]
pub struct Time<T: Default = ()> {
    context: T,
    wrap_period: Duration,
    delta: Duration,
    delta_secs: f32,
    delta_secs_f64: f64,
    elapsed: Duration,
    elapsed_secs: f32,
    elapsed_secs_f64: f64,
    elapsed_wrapped: Duration,
    elapsed_secs_wrapped: f32,
    elapsed_secs_wrapped_f64: f64,
}

impl<T: Default> Time<T> {
    const DEFAULT_WRAP_PERIOD: Duration = Duration::from_secs(3600); // 1 hour

    /// Create a new clock from context with [`Self::delta`] and [`Self::elapsed`] starting from
    /// zero.
    pub fn new_with(context: T) -> Self {
        Self {
            context,
            ..Default::default()
        }
    }

    /// Advance this clock by adding a `delta` duration to it.
    ///
    /// The added duration will be returned by [`Self::delta`] and
    /// [`Self::elapsed`] will be increased by the duration. Adding
    /// [`Duration::ZERO`] is allowed and will set [`Self::delta`] to zero.
    pub fn advance_by(&mut self, delta: Duration) {
        self.delta = delta;
        self.delta_secs = self.delta.as_secs_f32();
        self.delta_secs_f64 = self.delta.as_secs_f64();
        self.elapsed += delta;
        self.elapsed_secs = self.elapsed.as_secs_f32();
        self.elapsed_secs_f64 = self.elapsed.as_secs_f64();
        self.elapsed_wrapped = duration_rem(self.elapsed, self.wrap_period);
        self.elapsed_secs_wrapped = self.elapsed_wrapped.as_secs_f32();
        self.elapsed_secs_wrapped_f64 = self.elapsed_wrapped.as_secs_f64();
    }

    /// Advance this clock to a specific `elapsed` time.
    ///
    /// [`Self::delta()`] will return the amount of time the clock was advanced
    /// and [`Self::elapsed()`] will be the `elapsed` value passed in. Cannot be
    /// used to move time backwards.
    ///
    /// # Panics
    ///
    /// Panics if `elapsed` is less than `Self::elapsed()`.
    pub fn advance_to(&mut self, elapsed: Duration) {
        assert!(
            elapsed >= self.elapsed,
            "tried to move time backwards to an earlier elapsed moment"
        );
        self.advance_by(elapsed - self.elapsed);
    }

    /// Returns the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped).
    ///
    /// **Note:** The default modulus is one hour.
    #[inline]
    pub fn wrap_period(&self) -> Duration {
        self.wrap_period
    }

    /// Sets the modulus used to calculate [`elapsed_wrapped`](#method.elapsed_wrapped).
    ///
    /// **Note:** This will not take effect until the next update.
    ///
    /// # Panics
    ///
    /// Panics if `wrap_period` is a zero-length duration.
    #[inline]
    pub fn set_wrap_period(&mut self, wrap_period: Duration) {
        assert!(!wrap_period.is_zero(), "division by zero");
        self.wrap_period = wrap_period;
    }

    /// Returns how much time has advanced since the last [`update`](#method.update), as a
    /// [`Duration`].
    #[inline]
    pub fn delta(&self) -> Duration {
        self.delta
    }

    /// Returns how much time has advanced since the last [`update`](#method.update), as [`f32`]
    /// seconds.
    #[inline]
    pub fn delta_secs(&self) -> f32 {
        self.delta_secs
    }

    /// Returns how much time has advanced since the last [`update`](#method.update), as [`f64`]
    /// seconds.
    #[inline]
    pub fn delta_secs_f64(&self) -> f64 {
        self.delta_secs_f64
    }

    /// Returns how much time has advanced since [`startup`](#method.startup), as [`Duration`].
    #[inline]
    pub fn elapsed(&self) -> Duration {
        self.elapsed
    }

    /// Returns how much time has advanced since [`startup`](#method.startup), as [`f32`] seconds.
    ///
    /// **Note:** This is a monotonically increasing value. Its precision will degrade over time.
    /// If you need an `f32` but that precision loss is unacceptable,
    /// use [`elapsed_secs_wrapped`](#method.elapsed_secs_wrapped).
    #[inline]
    pub fn elapsed_secs(&self) -> f32 {
        self.elapsed_secs
    }

    /// Returns how much time has advanced since [`startup`](#method.startup), as [`f64`] seconds.
    #[inline]
    pub fn elapsed_secs_f64(&self) -> f64 {
        self.elapsed_secs_f64
    }

    /// Returns how much time has advanced since [`startup`](#method.startup) modulo
    /// the [`wrap_period`](#method.wrap_period), as [`Duration`].
    #[inline]
    pub fn elapsed_wrapped(&self) -> Duration {
        self.elapsed_wrapped
    }

    /// Returns how much time has advanced since [`startup`](#method.startup) modulo
    /// the [`wrap_period`](#method.wrap_period), as [`f32`] seconds.
    ///
    /// This method is intended for applications (e.g. shaders) that require an [`f32`] value but
    /// suffer from the gradual precision loss of [`elapsed_secs`](#method.elapsed_secs).
    #[inline]
    pub fn elapsed_secs_wrapped(&self) -> f32 {
        self.elapsed_secs_wrapped
    }

    /// Returns how much time has advanced since [`startup`](#method.startup) modulo
    /// the [`wrap_period`](#method.wrap_period), as [`f64`] seconds.
    #[inline]
    pub fn elapsed_secs_wrapped_f64(&self) -> f64 {
        self.elapsed_secs_wrapped_f64
    }

    /// Returns a reference to the context of this specific clock.
    #[inline]
    pub fn context(&self) -> &T {
        &self.context
    }

    /// Returns a mutable reference to the context of this specific clock.
    #[inline]
    pub fn context_mut(&mut self) -> &mut T {
        &mut self.context
    }

    /// Returns a copy of this clock as fully generic clock without context.
    #[inline]
    pub fn as_generic(&self) -> Time<()> {
        Time {
            context: (),
            wrap_period: self.wrap_period,
            delta: self.delta,
            delta_secs: self.delta_secs,
            delta_secs_f64: self.delta_secs_f64,
            elapsed: self.elapsed,
            elapsed_secs: self.elapsed_secs,
            elapsed_secs_f64: self.elapsed_secs_f64,
            elapsed_wrapped: self.elapsed_wrapped,
            elapsed_secs_wrapped: self.elapsed_secs_wrapped,
            elapsed_secs_wrapped_f64: self.elapsed_secs_wrapped_f64,
        }
    }
}

impl<T: Default> Default for Time<T> {
    fn default() -> Self {
        Self {
            context: Default::default(),
            wrap_period: Self::DEFAULT_WRAP_PERIOD,
            delta: Duration::ZERO,
            delta_secs: 0.0,
            delta_secs_f64: 0.0,
            elapsed: Duration::ZERO,
            elapsed_secs: 0.0,
            elapsed_secs_f64: 0.0,
            elapsed_wrapped: Duration::ZERO,
            elapsed_secs_wrapped: 0.0,
            elapsed_secs_wrapped_f64: 0.0,
        }
    }
}

fn duration_rem(dividend: Duration, divisor: Duration) -> Duration {
    // `Duration` does not have a built-in modulo operation
    let quotient = (dividend.as_nanos() / divisor.as_nanos()) as u32;
    dividend - (quotient * divisor)
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_initial_state() {
        let time: Time = Time::default();

        assert_eq!(time.wrap_period(), Time::<()>::DEFAULT_WRAP_PERIOD);
        assert_eq!(time.delta(), Duration::ZERO);
        assert_eq!(time.delta_secs(), 0.0);
        assert_eq!(time.delta_secs_f64(), 0.0);
        assert_eq!(time.elapsed(), Duration::ZERO);
        assert_eq!(time.elapsed_secs(), 0.0);
        assert_eq!(time.elapsed_secs_f64(), 0.0);
        assert_eq!(time.elapsed_wrapped(), Duration::ZERO);
        assert_eq!(time.elapsed_secs_wrapped(), 0.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);
    }

    #[test]
    fn test_advance_by() {
        let mut time: Time = Time::default();

        time.advance_by(Duration::from_millis(250));

        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.delta_secs(), 0.25);
        assert_eq!(time.delta_secs_f64(), 0.25);
        assert_eq!(time.elapsed(), Duration::from_millis(250));
        assert_eq!(time.elapsed_secs(), 0.25);
        assert_eq!(time.elapsed_secs_f64(), 0.25);

        time.advance_by(Duration::from_millis(500));

        assert_eq!(time.delta(), Duration::from_millis(500));
        assert_eq!(time.delta_secs(), 0.5);
        assert_eq!(time.delta_secs_f64(), 0.5);
        assert_eq!(time.elapsed(), Duration::from_millis(750));
        assert_eq!(time.elapsed_secs(), 0.75);
        assert_eq!(time.elapsed_secs_f64(), 0.75);

        time.advance_by(Duration::ZERO);

        assert_eq!(time.delta(), Duration::ZERO);
        assert_eq!(time.delta_secs(), 0.0);
        assert_eq!(time.delta_secs_f64(), 0.0);
        assert_eq!(time.elapsed(), Duration::from_millis(750));
        assert_eq!(time.elapsed_secs(), 0.75);
        assert_eq!(time.elapsed_secs_f64(), 0.75);
    }

    #[test]
    fn test_advance_to() {
        let mut time: Time = Time::default();

        time.advance_to(Duration::from_millis(250));

        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.delta_secs(), 0.25);
        assert_eq!(time.delta_secs_f64(), 0.25);
        assert_eq!(time.elapsed(), Duration::from_millis(250));
        assert_eq!(time.elapsed_secs(), 0.25);
        assert_eq!(time.elapsed_secs_f64(), 0.25);

        time.advance_to(Duration::from_millis(750));

        assert_eq!(time.delta(), Duration::from_millis(500));
        assert_eq!(time.delta_secs(), 0.5);
        assert_eq!(time.delta_secs_f64(), 0.5);
        assert_eq!(time.elapsed(), Duration::from_millis(750));
        assert_eq!(time.elapsed_secs(), 0.75);
        assert_eq!(time.elapsed_secs_f64(), 0.75);

        time.advance_to(Duration::from_millis(750));

        assert_eq!(time.delta(), Duration::ZERO);
        assert_eq!(time.delta_secs(), 0.0);
        assert_eq!(time.delta_secs_f64(), 0.0);
        assert_eq!(time.elapsed(), Duration::from_millis(750));
        assert_eq!(time.elapsed_secs(), 0.75);
        assert_eq!(time.elapsed_secs_f64(), 0.75);
    }

    #[test]
    #[should_panic]
    fn test_advance_to_backwards_panics() {
        let mut time: Time = Time::default();

        time.advance_to(Duration::from_millis(750));

        time.advance_to(Duration::from_millis(250));
    }

    #[test]
    fn test_wrapping() {
        let mut time: Time = Time::default();
        time.set_wrap_period(Duration::from_secs(3));

        time.advance_by(Duration::from_secs(2));

        assert_eq!(time.elapsed_wrapped(), Duration::from_secs(2));
        assert_eq!(time.elapsed_secs_wrapped(), 2.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 2.0);

        time.advance_by(Duration::from_secs(2));

        assert_eq!(time.elapsed_wrapped(), Duration::from_secs(1));
        assert_eq!(time.elapsed_secs_wrapped(), 1.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 1.0);

        time.advance_by(Duration::from_secs(2));

        assert_eq!(time.elapsed_wrapped(), Duration::ZERO);
        assert_eq!(time.elapsed_secs_wrapped(), 0.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);

        time.advance_by(Duration::new(3, 250_000_000));

        assert_eq!(time.elapsed_wrapped(), Duration::from_millis(250));
        assert_eq!(time.elapsed_secs_wrapped(), 0.25);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 0.25);
    }

    #[test]
    fn test_wrapping_change() {
        let mut time: Time = Time::default();
        time.set_wrap_period(Duration::from_secs(5));

        time.advance_by(Duration::from_secs(8));

        assert_eq!(time.elapsed_wrapped(), Duration::from_secs(3));
        assert_eq!(time.elapsed_secs_wrapped(), 3.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 3.0);

        time.set_wrap_period(Duration::from_secs(2));

        assert_eq!(time.elapsed_wrapped(), Duration::from_secs(3));
        assert_eq!(time.elapsed_secs_wrapped(), 3.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 3.0);

        time.advance_by(Duration::ZERO);

        // Time will wrap to modulo duration from full `elapsed()`, not to what
        // is left in `elapsed_wrapped()`. This test of values is here to ensure
        // that we notice if we change that behavior.
        assert_eq!(time.elapsed_wrapped(), Duration::from_secs(0));
        assert_eq!(time.elapsed_secs_wrapped(), 0.0);
        assert_eq!(time.elapsed_secs_wrapped_f64(), 0.0);
    }
}