bevy_tnua/builtins/jump.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
use crate::math::{AdjustPrecision, Float, Vector3};
use bevy::prelude::*;
use crate::util::SegmentedJumpInitialVelocityCalculator;
use crate::{
TnuaAction, TnuaActionContext, TnuaActionInitiationDirective, TnuaActionLifecycleDirective,
TnuaActionLifecycleStatus,
};
/// The basic jump [action](TnuaAction).
///
/// This action implements jump physics explained in <https://youtu.be/hG9SzQxaCm8> and
/// <https://youtu.be/eeLPL3Y9jjA>. Most of its fields have sane defaults - the only field that
/// must be set is [`height`](Self::height), which controls the jump height.
///
/// The action must be fed for as long as the player holds the jump button. Once the action stops
/// being fed, it'll apply extra gravity to shorten the jump. If the game desires fixed height
/// jumps instead (where the player cannot make lower jumps by tapping the jump button)
/// [`shorten_extra_gravity`](Self::shorten_extra_gravity) should be set to `0.0`.
#[derive(Clone, Debug)]
pub struct TnuaBuiltinJump {
/// The height the character will jump to.
///
/// If [`shorten_extra_gravity`](Self::shorten_extra_gravity) is higher than `0.0`, the
/// character may stop the jump in the middle if the jump action is no longer fed (usually when
/// the player releases the jump button) and the character may not reach its full jump height.
///
/// The jump height is calculated from the center of the character at float_height to the
/// center of the character at the top of the jump. It _does not_ mean the height from the
/// ground. The float height is calculated by the inspecting the character's current position
/// and the basis' [`displacement`](crate::TnuaBasis::displacement).
pub height: Float,
/// Allow this action to start even if the character is not touching ground nor in coyote time.
pub allow_in_air: bool,
/// Extra gravity for breaking too fast jump from running up a slope.
///
/// When running up a slope, the character gets more jump strength to avoid slamming into the
/// slope. This may cause the jump to be too high, so this value is used to brake it.
///
/// **NOTE**: This force will be added to the normal gravity.
pub upslope_extra_gravity: Float,
/// Extra gravity for fast takeoff.
///
/// Without this, jumps feel painfully slow. Adding this will apply extra gravity until the
/// vertical velocity reaches below [`takeoff_above_velocity`](Self::takeoff_above_velocity),
/// and increase the initial jump boost in order to compensate. This will make the jump feel
/// more snappy.
pub takeoff_extra_gravity: Float,
/// The range of upward velocity during [`takeoff_extra_gravity`](Self::takeoff_extra_gravity)
/// is applied.
///
/// To disable, set this to [`Float::INFINITY`] rather than zero.
pub takeoff_above_velocity: Float,
/// Extra gravity for falling down after reaching the top of the jump.
///
/// **NOTE**: This force will be added to the normal gravity.
pub fall_extra_gravity: Float,
/// Extra gravity for shortening a jump when the player releases the jump button.
///
/// **NOTE**: This force will be added to the normal gravity.
pub shorten_extra_gravity: Float,
/// Used to decrease the time the character spends "floating" at the peak of the jump.
///
/// When the character's upward velocity is above this value,
/// [`peak_prevention_extra_gravity`](Self::peak_prevention_extra_gravity) will be added to the
/// gravity in order to shorten the float time.
///
/// This extra gravity is taken into account when calculating the initial jump speed, so the
/// character is still supposed to reach its full jump [`height`](Self::height).
pub peak_prevention_at_upward_velocity: Float,
/// Extra gravity for decreasing the time the character spends at the peak of the jump.
///
/// **NOTE**: This force will be added to the normal gravity.
pub peak_prevention_extra_gravity: Float,
/// A duration, in seconds, after which the character would jump if the jump button was already
/// pressed when the jump became available.
///
/// The duration is measured from the moment the jump became available - not from the moment
/// the jump button was pressed.
///
/// When set to `None`, the character will not jump no matter how long the player holds the
/// jump button.
///
/// If the jump button is held but the jump input is still buffered (see
/// [`input_buffer_time`](Self::input_buffer_time)), this setting will have no effect because
/// the character will simply jump immediately.
pub reschedule_cooldown: Option<Float>,
/// A duration, in seconds, where a player can press a jump button before a jump becomes
/// possible (typically when a character is still in the air and about the land) and the jump
/// action would still get registered and be executed once the jump is possible.
pub input_buffer_time: Float,
}
impl Default for TnuaBuiltinJump {
fn default() -> Self {
Self {
height: 0.0,
allow_in_air: false,
upslope_extra_gravity: 30.0,
takeoff_extra_gravity: 30.0,
takeoff_above_velocity: 2.0,
fall_extra_gravity: 20.0,
shorten_extra_gravity: 60.0,
peak_prevention_at_upward_velocity: 1.0,
peak_prevention_extra_gravity: 20.0,
reschedule_cooldown: None,
input_buffer_time: 0.2,
}
}
}
impl TnuaAction for TnuaBuiltinJump {
const NAME: &'static str = "TnuaBuiltinJump";
type State = TnuaBuiltinJumpState;
const VIOLATES_COYOTE_TIME: bool = true;
fn initiation_decision(
&self,
ctx: TnuaActionContext,
being_fed_for: &bevy::time::Stopwatch,
) -> crate::basis_action_traits::TnuaActionInitiationDirective {
if self.allow_in_air || !ctx.basis.is_airborne() {
// Either not airborne, or air jumps are allowed
TnuaActionInitiationDirective::Allow
} else if (being_fed_for.elapsed().as_secs_f64() as Float) < self.input_buffer_time {
TnuaActionInitiationDirective::Delay
} else {
TnuaActionInitiationDirective::Reject
}
}
fn apply(
&self,
state: &mut Self::State,
ctx: TnuaActionContext,
lifecycle_status: TnuaActionLifecycleStatus,
motor: &mut crate::TnuaMotor,
) -> TnuaActionLifecycleDirective {
let up = ctx.up_direction.adjust_precision();
if lifecycle_status.just_started() {
let mut calculator = SegmentedJumpInitialVelocityCalculator::new(self.height);
let gravity = ctx.tracker.gravity.dot(-up);
let kinetic_energy = calculator
.add_segment(
gravity + self.peak_prevention_extra_gravity,
self.peak_prevention_at_upward_velocity,
)
.add_segment(gravity, self.takeoff_above_velocity)
.add_final_segment(gravity + self.takeoff_extra_gravity)
.kinetic_energy()
.expect("`add_final_segment` should have covered remaining height");
*state = TnuaBuiltinJumpState::StartingJump {
desired_energy: kinetic_energy,
};
}
let effective_velocity = ctx.basis.effective_velocity();
// TODO: Once `std::mem::variant_count` gets stabilized, use that instead. The idea is to
// allow jumping through multiple states but failing if we get into loop.
for _ in 0..7 {
return match state {
TnuaBuiltinJumpState::NoJump => panic!(),
TnuaBuiltinJumpState::StartingJump { desired_energy } => {
let extra_height = if let Some(displacement) = ctx.basis.displacement() {
displacement.dot(up)
} else if !self.allow_in_air && ctx.basis.is_airborne() {
return self.directive_simple_or_reschedule(lifecycle_status);
} else {
// This means we are at Coyote time, so just jump from place.
0.0
};
let gravity = ctx.tracker.gravity.dot(-up);
let energy_from_extra_height = extra_height * gravity;
let desired_kinetic_energy = *desired_energy - energy_from_extra_height;
let desired_upward_velocity =
SegmentedJumpInitialVelocityCalculator::kinetic_energy_to_velocity(
desired_kinetic_energy,
);
let relative_velocity =
effective_velocity.dot(up) - ctx.basis.vertical_velocity().max(0.0);
motor.lin.cancel_on_axis(up);
motor.lin.boost += (desired_upward_velocity - relative_velocity) * up;
if 0.0 <= extra_height {
*state = TnuaBuiltinJumpState::SlowDownTooFastSlopeJump {
desired_energy: *desired_energy,
zero_potential_energy_at: ctx.tracker.translation - extra_height * up,
};
}
self.directive_simple_or_reschedule(lifecycle_status)
}
TnuaBuiltinJumpState::SlowDownTooFastSlopeJump {
desired_energy,
zero_potential_energy_at,
} => {
let upward_velocity = up.dot(effective_velocity);
if upward_velocity <= ctx.basis.vertical_velocity() {
*state = TnuaBuiltinJumpState::FallSection;
continue;
} else if !lifecycle_status.is_active() {
*state = TnuaBuiltinJumpState::StoppedMaintainingJump;
continue;
}
let relative_velocity = effective_velocity.dot(up);
let extra_height =
(ctx.tracker.translation - *zero_potential_energy_at).dot(up);
let gravity = ctx.tracker.gravity.dot(-up);
let energy_from_extra_height = extra_height * gravity;
let desired_kinetic_energy = *desired_energy - energy_from_extra_height;
let desired_upward_velocity =
SegmentedJumpInitialVelocityCalculator::kinetic_energy_to_velocity(
desired_kinetic_energy,
);
if relative_velocity <= desired_upward_velocity {
*state = TnuaBuiltinJumpState::MaintainingJump;
continue;
} else {
let mut extra_gravity = self.upslope_extra_gravity;
if self.takeoff_above_velocity <= relative_velocity {
extra_gravity += self.takeoff_extra_gravity;
}
motor.lin.cancel_on_axis(up);
motor.lin.acceleration = -extra_gravity * up;
self.directive_simple_or_reschedule(lifecycle_status)
}
}
TnuaBuiltinJumpState::MaintainingJump => {
let relevant_upward_velocity = effective_velocity.dot(up);
if relevant_upward_velocity <= 0.0 {
*state = TnuaBuiltinJumpState::FallSection;
motor.lin.cancel_on_axis(up);
} else {
motor.lin.cancel_on_axis(up);
if relevant_upward_velocity < self.peak_prevention_at_upward_velocity {
motor.lin.acceleration -= self.peak_prevention_extra_gravity * up;
} else if self.takeoff_above_velocity <= relevant_upward_velocity {
motor.lin.acceleration -= self.takeoff_extra_gravity * up;
}
}
match lifecycle_status {
TnuaActionLifecycleStatus::Initiated
| TnuaActionLifecycleStatus::CancelledFrom
| TnuaActionLifecycleStatus::StillFed => {
TnuaActionLifecycleDirective::StillActive
}
TnuaActionLifecycleStatus::CancelledInto => self.finish_or_reschedule(),
TnuaActionLifecycleStatus::NoLongerFed => {
*state = TnuaBuiltinJumpState::StoppedMaintainingJump;
TnuaActionLifecycleDirective::StillActive
}
}
}
TnuaBuiltinJumpState::StoppedMaintainingJump => {
if matches!(lifecycle_status, TnuaActionLifecycleStatus::CancelledInto) {
self.finish_or_reschedule()
} else {
let landed = ctx
.basis
.displacement()
.is_some_and(|displacement| displacement.dot(up) <= 0.0);
if landed {
self.finish_or_reschedule()
} else {
let upward_velocity = up.dot(effective_velocity);
if upward_velocity <= 0.0 {
*state = TnuaBuiltinJumpState::FallSection;
continue;
}
let extra_gravity = if self.takeoff_above_velocity <= upward_velocity {
self.shorten_extra_gravity + self.takeoff_extra_gravity
} else {
self.shorten_extra_gravity
};
motor.lin.cancel_on_axis(up);
motor.lin.acceleration -= extra_gravity * up;
TnuaActionLifecycleDirective::StillActive
}
}
}
TnuaBuiltinJumpState::FallSection => {
let landed = ctx
.basis
.displacement()
.is_some_and(|displacement| displacement.dot(up) <= 0.0);
if landed
|| matches!(lifecycle_status, TnuaActionLifecycleStatus::CancelledInto)
{
self.finish_or_reschedule()
} else {
motor.lin.cancel_on_axis(up);
motor.lin.acceleration -= self.fall_extra_gravity * up;
TnuaActionLifecycleDirective::StillActive
}
}
};
}
error!("Tnua could not decide on jump state");
TnuaActionLifecycleDirective::Finished
}
}
impl TnuaBuiltinJump {
fn finish_or_reschedule(&self) -> TnuaActionLifecycleDirective {
if let Some(cooldown) = self.reschedule_cooldown {
TnuaActionLifecycleDirective::Reschedule {
after_seconds: cooldown,
}
} else {
TnuaActionLifecycleDirective::Finished
}
}
fn directive_simple_or_reschedule(
&self,
lifecycle_status: TnuaActionLifecycleStatus,
) -> TnuaActionLifecycleDirective {
if let Some(cooldown) = self.reschedule_cooldown {
lifecycle_status.directive_simple_reschedule(cooldown)
} else {
lifecycle_status.directive_simple()
}
}
}
#[derive(Default, Debug, Clone)]
pub enum TnuaBuiltinJumpState {
#[default]
NoJump,
// FreeFall,
StartingJump {
/// The potential energy at the top of the jump, when:
/// * The potential energy at the bottom of the jump is defined as 0
/// * The mass is 1
///
/// Calculating the desired velocity based on energy is easier than using the ballistic
/// formulas.
desired_energy: Float,
},
SlowDownTooFastSlopeJump {
desired_energy: Float,
zero_potential_energy_at: Vector3,
},
MaintainingJump,
StoppedMaintainingJump,
FallSection,
}