bevy_transform/components/global_transform.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
use core::ops::Mul;
use super::Transform;
use bevy_math::{Affine3A, Dir3, Isometry3d, Mat4, Quat, Vec3, Vec3A};
#[cfg(all(feature = "bevy-support", feature = "serialize"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
use derive_more::derive::From;
#[cfg(feature = "bevy-support")]
use {
bevy_ecs::{component::Component, reflect::ReflectComponent},
bevy_reflect::{std_traits::ReflectDefault, Reflect},
};
/// [`GlobalTransform`] is an affine transformation from entity-local coordinates to worldspace coordinates.
///
/// You cannot directly mutate [`GlobalTransform`]; instead, you change an entity's transform by manipulating
/// its [`Transform`], which indirectly causes Bevy to update its [`GlobalTransform`].
///
/// * To get the global transform of an entity, you should get its [`GlobalTransform`].
/// * For transform hierarchies to work correctly, you must have both a [`Transform`] and a [`GlobalTransform`].
/// * ~You may use the [`TransformBundle`](crate::bundles::TransformBundle) to guarantee this.~
/// [`TransformBundle`](crate::bundles::TransformBundle) is now deprecated.
/// [`GlobalTransform`] is automatically inserted whenever [`Transform`] is inserted.
///
/// ## [`Transform`] and [`GlobalTransform`]
///
/// [`Transform`] transforms an entity relative to its parent's reference frame, or relative to world space coordinates,
/// if it doesn't have a [`Parent`](bevy_hierarchy::Parent).
///
/// [`GlobalTransform`] is managed by Bevy; it is computed by successively applying the [`Transform`] of each ancestor
/// entity which has a Transform. This is done automatically by Bevy-internal systems in the system set
/// [`TransformPropagate`](crate::TransformSystem::TransformPropagate).
///
/// This system runs during [`PostUpdate`](bevy_app::PostUpdate). If you
/// update the [`Transform`] of an entity in this schedule or after, you will notice a 1 frame lag
/// before the [`GlobalTransform`] is updated.
///
/// # Examples
///
/// - [`transform`][transform_example]
///
/// [transform_example]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/transform.rs
#[derive(Debug, PartialEq, Clone, Copy, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy-support",
derive(Component, Reflect),
reflect(Component, Default, PartialEq, Debug)
)]
#[cfg_attr(
all(feature = "bevy-support", feature = "serialize"),
reflect(Serialize, Deserialize)
)]
pub struct GlobalTransform(Affine3A);
macro_rules! impl_local_axis {
($pos_name: ident, $neg_name: ident, $axis: ident) => {
#[doc=std::concat!("Return the local ", std::stringify!($pos_name), " vector (", std::stringify!($axis) ,").")]
#[inline]
pub fn $pos_name(&self) -> Dir3 {
Dir3::new_unchecked((self.0.matrix3 * Vec3::$axis).normalize())
}
#[doc=std::concat!("Return the local ", std::stringify!($neg_name), " vector (-", std::stringify!($axis) ,").")]
#[inline]
pub fn $neg_name(&self) -> Dir3 {
-self.$pos_name()
}
};
}
impl GlobalTransform {
/// An identity [`GlobalTransform`] that maps all points in space to themselves.
pub const IDENTITY: Self = Self(Affine3A::IDENTITY);
#[doc(hidden)]
#[inline]
pub fn from_xyz(x: f32, y: f32, z: f32) -> Self {
Self::from_translation(Vec3::new(x, y, z))
}
#[doc(hidden)]
#[inline]
pub fn from_translation(translation: Vec3) -> Self {
GlobalTransform(Affine3A::from_translation(translation))
}
#[doc(hidden)]
#[inline]
pub fn from_rotation(rotation: Quat) -> Self {
GlobalTransform(Affine3A::from_rotation_translation(rotation, Vec3::ZERO))
}
#[doc(hidden)]
#[inline]
pub fn from_scale(scale: Vec3) -> Self {
GlobalTransform(Affine3A::from_scale(scale))
}
#[doc(hidden)]
#[inline]
pub fn from_isometry(iso: Isometry3d) -> Self {
Self(iso.into())
}
/// Returns the 3d affine transformation matrix as a [`Mat4`].
#[inline]
pub fn compute_matrix(&self) -> Mat4 {
Mat4::from(self.0)
}
/// Returns the 3d affine transformation matrix as an [`Affine3A`].
#[inline]
pub fn affine(&self) -> Affine3A {
self.0
}
/// Returns the transformation as a [`Transform`].
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn compute_transform(&self) -> Transform {
let (scale, rotation, translation) = self.0.to_scale_rotation_translation();
Transform {
translation,
rotation,
scale,
}
}
/// Returns the isometric part of the transformation as an [isometry]. Any scaling done by the
/// transformation will be ignored.
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
///
/// [isometry]: Isometry3d
#[inline]
pub fn to_isometry(&self) -> Isometry3d {
let (_, rotation, translation) = self.0.to_scale_rotation_translation();
Isometry3d::new(translation, rotation)
}
/// Returns the [`Transform`] `self` would have if it was a child of an entity
/// with the `parent` [`GlobalTransform`].
///
/// This is useful if you want to "reparent" an [`Entity`](bevy_ecs::entity::Entity).
/// Say you have an entity `e1` that you want to turn into a child of `e2`,
/// but you want `e1` to keep the same global transform, even after re-parenting. You would use:
///
/// ```
/// # use bevy_transform::prelude::{GlobalTransform, Transform};
/// # use bevy_ecs::prelude::{Entity, Query, Component, Commands};
/// # use bevy_hierarchy::{prelude::Parent, BuildChildren};
/// #[derive(Component)]
/// struct ToReparent {
/// new_parent: Entity,
/// }
/// fn reparent_system(
/// mut commands: Commands,
/// mut targets: Query<(&mut Transform, Entity, &GlobalTransform, &ToReparent)>,
/// transforms: Query<&GlobalTransform>,
/// ) {
/// for (mut transform, entity, initial, to_reparent) in targets.iter_mut() {
/// if let Ok(parent_transform) = transforms.get(to_reparent.new_parent) {
/// *transform = initial.reparented_to(parent_transform);
/// commands.entity(entity)
/// .remove::<ToReparent>()
/// .set_parent(to_reparent.new_parent);
/// }
/// }
/// }
/// ```
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn reparented_to(&self, parent: &GlobalTransform) -> Transform {
let relative_affine = parent.affine().inverse() * self.affine();
let (scale, rotation, translation) = relative_affine.to_scale_rotation_translation();
Transform {
translation,
rotation,
scale,
}
}
/// Extracts `scale`, `rotation` and `translation` from `self`.
///
/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
#[inline]
pub fn to_scale_rotation_translation(&self) -> (Vec3, Quat, Vec3) {
self.0.to_scale_rotation_translation()
}
impl_local_axis!(right, left, X);
impl_local_axis!(up, down, Y);
impl_local_axis!(back, forward, Z);
/// Get the translation as a [`Vec3`].
#[inline]
pub fn translation(&self) -> Vec3 {
self.0.translation.into()
}
/// Get the translation as a [`Vec3A`].
#[inline]
pub fn translation_vec3a(&self) -> Vec3A {
self.0.translation
}
/// Get the rotation as a [`Quat`].
///
/// The transform is expected to be non-degenerate and without shearing, or the output will be invalid.
///
/// # Warning
///
/// This is calculated using `to_scale_rotation_translation`, meaning that you
/// should probably use it directly if you also need translation or scale.
#[inline]
pub fn rotation(&self) -> Quat {
self.to_scale_rotation_translation().1
}
/// Get the scale as a [`Vec3`].
///
/// The transform is expected to be non-degenerate and without shearing, or the output will be invalid.
///
/// Some of the computations overlap with `to_scale_rotation_translation`, which means you should use
/// it instead if you also need rotation.
#[inline]
pub fn scale(&self) -> Vec3 {
//Formula based on glam's implementation https://github.com/bitshifter/glam-rs/blob/2e4443e70c709710dfb25958d866d29b11ed3e2b/src/f32/affine3a.rs#L290
let det = self.0.matrix3.determinant();
Vec3::new(
self.0.matrix3.x_axis.length() * det.signum(),
self.0.matrix3.y_axis.length(),
self.0.matrix3.z_axis.length(),
)
}
/// Get an upper bound of the radius from the given `extents`.
#[inline]
pub fn radius_vec3a(&self, extents: Vec3A) -> f32 {
(self.0.matrix3 * extents).length()
}
/// Transforms the given point from local space to global space, applying shear, scale, rotation and translation.
///
/// It can be used like this:
///
/// ```
/// # use bevy_transform::prelude::{GlobalTransform};
/// # use bevy_math::prelude::Vec3;
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
/// let local_point = Vec3::new(1., 2., 3.);
/// let global_point = global_transform.transform_point(local_point);
/// assert_eq!(global_point, Vec3::new(2., 4., 6.));
/// ```
///
/// ```
/// # use bevy_transform::prelude::{GlobalTransform};
/// # use bevy_math::Vec3;
/// let global_point = Vec3::new(2., 4., 6.);
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
/// let local_point = global_transform.affine().inverse().transform_point3(global_point);
/// assert_eq!(local_point, Vec3::new(1., 2., 3.))
/// ```
///
/// To apply shear, scale, and rotation *without* applying translation, different functions are available:
/// ```
/// # use bevy_transform::prelude::{GlobalTransform};
/// # use bevy_math::prelude::Vec3;
/// let global_transform = GlobalTransform::from_xyz(1., 2., 3.);
/// let local_direction = Vec3::new(1., 2., 3.);
/// let global_direction = global_transform.affine().transform_vector3(local_direction);
/// assert_eq!(global_direction, Vec3::new(1., 2., 3.));
/// let roundtripped_local_direction = global_transform.affine().inverse().transform_vector3(global_direction);
/// assert_eq!(roundtripped_local_direction, local_direction);
/// ```
#[inline]
pub fn transform_point(&self, point: Vec3) -> Vec3 {
self.0.transform_point3(point)
}
/// Multiplies `self` with `transform` component by component, returning the
/// resulting [`GlobalTransform`]
#[inline]
pub fn mul_transform(&self, transform: Transform) -> Self {
Self(self.0 * transform.compute_affine())
}
}
impl Default for GlobalTransform {
fn default() -> Self {
Self::IDENTITY
}
}
impl From<Transform> for GlobalTransform {
fn from(transform: Transform) -> Self {
Self(transform.compute_affine())
}
}
impl From<Mat4> for GlobalTransform {
fn from(world_from_local: Mat4) -> Self {
Self(Affine3A::from_mat4(world_from_local))
}
}
impl Mul<GlobalTransform> for GlobalTransform {
type Output = GlobalTransform;
#[inline]
fn mul(self, global_transform: GlobalTransform) -> Self::Output {
GlobalTransform(self.0 * global_transform.0)
}
}
impl Mul<Transform> for GlobalTransform {
type Output = GlobalTransform;
#[inline]
fn mul(self, transform: Transform) -> Self::Output {
self.mul_transform(transform)
}
}
impl Mul<Vec3> for GlobalTransform {
type Output = Vec3;
#[inline]
fn mul(self, value: Vec3) -> Self::Output {
self.transform_point(value)
}
}
#[cfg(test)]
mod test {
use super::*;
use bevy_math::EulerRot::XYZ;
fn transform_equal(left: GlobalTransform, right: Transform) -> bool {
left.0.abs_diff_eq(right.compute_affine(), 0.01)
}
#[test]
fn reparented_to_transform_identity() {
fn reparent_to_same(t1: GlobalTransform, t2: GlobalTransform) -> Transform {
t2.mul_transform(t1.into()).reparented_to(&t2)
}
let t1 = GlobalTransform::from(Transform {
translation: Vec3::new(1034.0, 34.0, -1324.34),
rotation: Quat::from_euler(XYZ, 1.0, 0.9, 2.1),
scale: Vec3::new(1.0, 1.0, 1.0),
});
let t2 = GlobalTransform::from(Transform {
translation: Vec3::new(0.0, -54.493, 324.34),
rotation: Quat::from_euler(XYZ, 1.9, 0.3, 3.0),
scale: Vec3::new(1.345, 1.345, 1.345),
});
let retransformed = reparent_to_same(t1, t2);
assert!(
transform_equal(t1, retransformed),
"t1:{:#?} retransformed:{:#?}",
t1.compute_transform(),
retransformed,
);
}
#[test]
fn reparented_usecase() {
let t1 = GlobalTransform::from(Transform {
translation: Vec3::new(1034.0, 34.0, -1324.34),
rotation: Quat::from_euler(XYZ, 0.8, 1.9, 2.1),
scale: Vec3::new(10.9, 10.9, 10.9),
});
let t2 = GlobalTransform::from(Transform {
translation: Vec3::new(28.0, -54.493, 324.34),
rotation: Quat::from_euler(XYZ, 0.0, 3.1, 0.1),
scale: Vec3::new(0.9, 0.9, 0.9),
});
// goal: find `X` such as `t2 * X = t1`
let reparented = t1.reparented_to(&t2);
let t1_prime = t2 * reparented;
assert!(
transform_equal(t1, t1_prime.into()),
"t1:{:#?} t1_prime:{:#?}",
t1.compute_transform(),
t1_prime.compute_transform(),
);
}
#[test]
fn scale() {
let test_values = [-42.42, 0., 42.42];
for x in test_values {
for y in test_values {
for z in test_values {
let scale = Vec3::new(x, y, z);
let gt = GlobalTransform::from_scale(scale);
assert_eq!(gt.scale(), gt.to_scale_rotation_translation().0);
}
}
}
}
}