bevy_transform/components/
transform.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
use super::GlobalTransform;
use bevy_math::{Affine3A, Dir3, Isometry3d, Mat3, Mat4, Quat, Vec3};
use core::ops::Mul;
#[cfg(feature = "bevy-support")]
use {
    bevy_ecs::{component::Component, reflect::ReflectComponent},
    bevy_reflect::prelude::*,
};

/// Describe the position of an entity. If the entity has a parent, the position is relative
/// to its parent position.
///
/// * To place or move an entity, you should set its [`Transform`].
/// * To get the global transform of an entity, you should get its [`GlobalTransform`].
/// * To be displayed, an entity must have both a [`Transform`] and a [`GlobalTransform`].
///   * ~You may use the [`TransformBundle`](crate::bundles::TransformBundle) to guarantee this.~
///     [`TransformBundle`](crate::bundles::TransformBundle) is now deprecated.
///     [`GlobalTransform`] is automatically inserted whenever [`Transform`] is inserted.
///
/// ## [`Transform`] and [`GlobalTransform`]
///
/// [`Transform`] is the position of an entity relative to its parent position, or the reference
/// frame if it doesn't have a [`Parent`](bevy_hierarchy::Parent).
///
/// [`GlobalTransform`] is the position of an entity relative to the reference frame.
///
/// [`GlobalTransform`] is updated from [`Transform`] by systems in the system set
/// [`TransformPropagate`](crate::TransformSystem::TransformPropagate).
///
/// This system runs during [`PostUpdate`](bevy_app::PostUpdate). If you
/// update the [`Transform`] of an entity during this set or after, you will notice a 1 frame lag
/// before the [`GlobalTransform`] is updated.
///
/// # Examples
///
/// - [`transform`][transform_example]
///
/// [transform_example]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/transform.rs
#[derive(Debug, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "bevy-support",
    derive(Component, Reflect),
    require(GlobalTransform),
    reflect(Component, Default, PartialEq, Debug)
)]
#[cfg_attr(
    all(feature = "bevy-support", feature = "serialize"),
    reflect(Serialize, Deserialize)
)]
pub struct Transform {
    /// Position of the entity. In 2d, the last value of the `Vec3` is used for z-ordering.
    ///
    /// See the [`translations`] example for usage.
    ///
    /// [`translations`]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/translation.rs
    pub translation: Vec3,
    /// Rotation of the entity.
    ///
    /// See the [`3d_rotation`] example for usage.
    ///
    /// [`3d_rotation`]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/3d_rotation.rs
    pub rotation: Quat,
    /// Scale of the entity.
    ///
    /// See the [`scale`] example for usage.
    ///
    /// [`scale`]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/scale.rs
    pub scale: Vec3,
}

impl Transform {
    /// An identity [`Transform`] with no translation, rotation, and a scale of 1 on all axes.
    pub const IDENTITY: Self = Transform {
        translation: Vec3::ZERO,
        rotation: Quat::IDENTITY,
        scale: Vec3::ONE,
    };

    /// Creates a new [`Transform`] at the position `(x, y, z)`. In 2d, the `z` component
    /// is used for z-ordering elements: higher `z`-value will be in front of lower
    /// `z`-value.
    #[inline]
    pub const fn from_xyz(x: f32, y: f32, z: f32) -> Self {
        Self::from_translation(Vec3::new(x, y, z))
    }

    /// Extracts the translation, rotation, and scale from `matrix`. It must be a 3d affine
    /// transformation matrix.
    #[inline]
    pub fn from_matrix(world_from_local: Mat4) -> Self {
        let (scale, rotation, translation) = world_from_local.to_scale_rotation_translation();

        Transform {
            translation,
            rotation,
            scale,
        }
    }

    /// Creates a new [`Transform`], with `translation`. Rotation will be 0 and scale 1 on
    /// all axes.
    #[inline]
    pub const fn from_translation(translation: Vec3) -> Self {
        Transform {
            translation,
            ..Self::IDENTITY
        }
    }

    /// Creates a new [`Transform`], with `rotation`. Translation will be 0 and scale 1 on
    /// all axes.
    #[inline]
    pub const fn from_rotation(rotation: Quat) -> Self {
        Transform {
            rotation,
            ..Self::IDENTITY
        }
    }

    /// Creates a new [`Transform`], with `scale`. Translation will be 0 and rotation 0 on
    /// all axes.
    #[inline]
    pub const fn from_scale(scale: Vec3) -> Self {
        Transform {
            scale,
            ..Self::IDENTITY
        }
    }

    /// Creates a new [`Transform`] that is equivalent to the given [isometry].
    ///
    /// [isometry]: Isometry3d
    #[inline]
    pub fn from_isometry(iso: Isometry3d) -> Self {
        Transform {
            translation: iso.translation.into(),
            rotation: iso.rotation,
            ..Self::IDENTITY
        }
    }

    /// Returns this [`Transform`] with a new rotation so that [`Transform::forward`]
    /// points towards the `target` position and [`Transform::up`] points towards `up`.
    ///
    /// In some cases it's not possible to construct a rotation. Another axis will be picked in those cases:
    /// * if `target` is the same as the transform translation, `Vec3::Z` is used instead
    /// * if `up` fails converting to `Dir3` (e.g if it is `Vec3::ZERO`), `Dir3::Y` is used instead
    /// * if the resulting forward direction is parallel with `up`, an orthogonal vector is used as the "right" direction
    #[inline]
    #[must_use]
    pub fn looking_at(mut self, target: Vec3, up: impl TryInto<Dir3>) -> Self {
        self.look_at(target, up);
        self
    }

    /// Returns this [`Transform`] with a new rotation so that [`Transform::forward`]
    /// points in the given `direction` and [`Transform::up`] points towards `up`.
    ///
    /// In some cases it's not possible to construct a rotation. Another axis will be picked in those cases:
    /// * if `direction` fails converting to `Dir3` (e.g if it is `Vec3::ZERO`), `Dir3::Z` is used instead
    /// * if `up` fails converting to `Dir3`, `Dir3::Y` is used instead
    /// * if `direction` is parallel with `up`, an orthogonal vector is used as the "right" direction
    #[inline]
    #[must_use]
    pub fn looking_to(mut self, direction: impl TryInto<Dir3>, up: impl TryInto<Dir3>) -> Self {
        self.look_to(direction, up);
        self
    }

    /// Rotates this [`Transform`] so that the `main_axis` vector, reinterpreted in local coordinates, points
    /// in the given `main_direction`, while `secondary_axis` points towards `secondary_direction`.
    /// For example, if a spaceship model has its nose pointing in the X-direction in its own local coordinates
    /// and its dorsal fin pointing in the Y-direction, then `align(Dir3::X, v, Dir3::Y, w)` will make the spaceship's
    /// nose point in the direction of `v`, while the dorsal fin does its best to point in the direction `w`.
    ///
    ///
    /// In some cases a rotation cannot be constructed. Another axis will be picked in those cases:
    /// * if `main_axis` or `main_direction` fail converting to `Dir3` (e.g are zero), `Dir3::X` takes their place
    /// * if `secondary_axis` or `secondary_direction` fail converting, `Dir3::Y` takes their place
    /// * if `main_axis` is parallel with `secondary_axis` or `main_direction` is parallel with `secondary_direction`,
    ///     a rotation is constructed which takes `main_axis` to `main_direction` along a great circle, ignoring the secondary
    ///     counterparts
    ///
    /// See [`Transform::align`] for additional details.
    #[inline]
    #[must_use]
    pub fn aligned_by(
        mut self,
        main_axis: impl TryInto<Dir3>,
        main_direction: impl TryInto<Dir3>,
        secondary_axis: impl TryInto<Dir3>,
        secondary_direction: impl TryInto<Dir3>,
    ) -> Self {
        self.align(
            main_axis,
            main_direction,
            secondary_axis,
            secondary_direction,
        );
        self
    }

    /// Returns this [`Transform`] with a new translation.
    #[inline]
    #[must_use]
    pub const fn with_translation(mut self, translation: Vec3) -> Self {
        self.translation = translation;
        self
    }

    /// Returns this [`Transform`] with a new rotation.
    #[inline]
    #[must_use]
    pub const fn with_rotation(mut self, rotation: Quat) -> Self {
        self.rotation = rotation;
        self
    }

    /// Returns this [`Transform`] with a new scale.
    #[inline]
    #[must_use]
    pub const fn with_scale(mut self, scale: Vec3) -> Self {
        self.scale = scale;
        self
    }

    /// Returns the 3d affine transformation matrix from this transforms translation,
    /// rotation, and scale.
    #[inline]
    pub fn compute_matrix(&self) -> Mat4 {
        Mat4::from_scale_rotation_translation(self.scale, self.rotation, self.translation)
    }

    /// Returns the 3d affine transformation matrix from this transforms translation,
    /// rotation, and scale.
    #[inline]
    pub fn compute_affine(&self) -> Affine3A {
        Affine3A::from_scale_rotation_translation(self.scale, self.rotation, self.translation)
    }

    /// Get the unit vector in the local `X` direction.
    #[inline]
    pub fn local_x(&self) -> Dir3 {
        // Quat * unit vector is length 1
        Dir3::new_unchecked(self.rotation * Vec3::X)
    }

    /// Equivalent to [`-local_x()`][Transform::local_x()]
    #[inline]
    pub fn left(&self) -> Dir3 {
        -self.local_x()
    }

    /// Equivalent to [`local_x()`][Transform::local_x()]
    #[inline]
    pub fn right(&self) -> Dir3 {
        self.local_x()
    }

    /// Get the unit vector in the local `Y` direction.
    #[inline]
    pub fn local_y(&self) -> Dir3 {
        // Quat * unit vector is length 1
        Dir3::new_unchecked(self.rotation * Vec3::Y)
    }

    /// Equivalent to [`local_y()`][Transform::local_y]
    #[inline]
    pub fn up(&self) -> Dir3 {
        self.local_y()
    }

    /// Equivalent to [`-local_y()`][Transform::local_y]
    #[inline]
    pub fn down(&self) -> Dir3 {
        -self.local_y()
    }

    /// Get the unit vector in the local `Z` direction.
    #[inline]
    pub fn local_z(&self) -> Dir3 {
        // Quat * unit vector is length 1
        Dir3::new_unchecked(self.rotation * Vec3::Z)
    }

    /// Equivalent to [`-local_z()`][Transform::local_z]
    #[inline]
    pub fn forward(&self) -> Dir3 {
        -self.local_z()
    }

    /// Equivalent to [`local_z()`][Transform::local_z]
    #[inline]
    pub fn back(&self) -> Dir3 {
        self.local_z()
    }

    /// Rotates this [`Transform`] by the given rotation.
    ///
    /// If this [`Transform`] has a parent, the `rotation` is relative to the rotation of the parent.
    ///
    /// # Examples
    ///
    /// - [`3d_rotation`]
    ///
    /// [`3d_rotation`]: https://github.com/bevyengine/bevy/blob/latest/examples/transforms/3d_rotation.rs
    #[inline]
    pub fn rotate(&mut self, rotation: Quat) {
        self.rotation = rotation * self.rotation;
    }

    /// Rotates this [`Transform`] around the given `axis` by `angle` (in radians).
    ///
    /// If this [`Transform`] has a parent, the `axis` is relative to the rotation of the parent.
    #[inline]
    pub fn rotate_axis(&mut self, axis: Dir3, angle: f32) {
        self.rotate(Quat::from_axis_angle(axis.into(), angle));
    }

    /// Rotates this [`Transform`] around the `X` axis by `angle` (in radians).
    ///
    /// If this [`Transform`] has a parent, the axis is relative to the rotation of the parent.
    #[inline]
    pub fn rotate_x(&mut self, angle: f32) {
        self.rotate(Quat::from_rotation_x(angle));
    }

    /// Rotates this [`Transform`] around the `Y` axis by `angle` (in radians).
    ///
    /// If this [`Transform`] has a parent, the axis is relative to the rotation of the parent.
    #[inline]
    pub fn rotate_y(&mut self, angle: f32) {
        self.rotate(Quat::from_rotation_y(angle));
    }

    /// Rotates this [`Transform`] around the `Z` axis by `angle` (in radians).
    ///
    /// If this [`Transform`] has a parent, the axis is relative to the rotation of the parent.
    #[inline]
    pub fn rotate_z(&mut self, angle: f32) {
        self.rotate(Quat::from_rotation_z(angle));
    }

    /// Rotates this [`Transform`] by the given `rotation`.
    ///
    /// The `rotation` is relative to this [`Transform`]'s current rotation.
    #[inline]
    pub fn rotate_local(&mut self, rotation: Quat) {
        self.rotation *= rotation;
    }

    /// Rotates this [`Transform`] around its local `axis` by `angle` (in radians).
    #[inline]
    pub fn rotate_local_axis(&mut self, axis: Dir3, angle: f32) {
        self.rotate_local(Quat::from_axis_angle(axis.into(), angle));
    }

    /// Rotates this [`Transform`] around its local `X` axis by `angle` (in radians).
    #[inline]
    pub fn rotate_local_x(&mut self, angle: f32) {
        self.rotate_local(Quat::from_rotation_x(angle));
    }

    /// Rotates this [`Transform`] around its local `Y` axis by `angle` (in radians).
    #[inline]
    pub fn rotate_local_y(&mut self, angle: f32) {
        self.rotate_local(Quat::from_rotation_y(angle));
    }

    /// Rotates this [`Transform`] around its local `Z` axis by `angle` (in radians).
    #[inline]
    pub fn rotate_local_z(&mut self, angle: f32) {
        self.rotate_local(Quat::from_rotation_z(angle));
    }

    /// Translates this [`Transform`] around a `point` in space.
    ///
    /// If this [`Transform`] has a parent, the `point` is relative to the [`Transform`] of the parent.
    #[inline]
    pub fn translate_around(&mut self, point: Vec3, rotation: Quat) {
        self.translation = point + rotation * (self.translation - point);
    }

    /// Rotates this [`Transform`] around a `point` in space.
    ///
    /// If this [`Transform`] has a parent, the `point` is relative to the [`Transform`] of the parent.
    #[inline]
    pub fn rotate_around(&mut self, point: Vec3, rotation: Quat) {
        self.translate_around(point, rotation);
        self.rotate(rotation);
    }

    /// Rotates this [`Transform`] so that [`Transform::forward`] points towards the `target` position,
    /// and [`Transform::up`] points towards `up`.
    ///
    /// In some cases it's not possible to construct a rotation. Another axis will be picked in those cases:
    /// * if `target` is the same as the transform translation, `Vec3::Z` is used instead
    /// * if `up` fails converting to `Dir3` (e.g if it is `Vec3::ZERO`), `Dir3::Y` is used instead
    /// * if the resulting forward direction is parallel with `up`, an orthogonal vector is used as the "right" direction
    #[inline]
    pub fn look_at(&mut self, target: Vec3, up: impl TryInto<Dir3>) {
        self.look_to(target - self.translation, up);
    }

    /// Rotates this [`Transform`] so that [`Transform::forward`] points in the given `direction`
    /// and [`Transform::up`] points towards `up`.
    ///
    /// In some cases it's not possible to construct a rotation. Another axis will be picked in those cases:
    /// * if `direction` fails converting to `Dir3` (e.g if it is `Vec3::ZERO`), `Dir3::NEG_Z` is used instead
    /// * if `up` fails converting to `Dir3`, `Dir3::Y` is used instead
    /// * if `direction` is parallel with `up`, an orthogonal vector is used as the "right" direction
    #[inline]
    pub fn look_to(&mut self, direction: impl TryInto<Dir3>, up: impl TryInto<Dir3>) {
        let back = -direction.try_into().unwrap_or(Dir3::NEG_Z);
        let up = up.try_into().unwrap_or(Dir3::Y);
        let right = up
            .cross(back.into())
            .try_normalize()
            .unwrap_or_else(|| up.any_orthonormal_vector());
        let up = back.cross(right);
        self.rotation = Quat::from_mat3(&Mat3::from_cols(right, up, back.into()));
    }

    /// Rotates this [`Transform`] so that the `main_axis` vector, reinterpreted in local coordinates, points
    /// in the given `main_direction`, while `secondary_axis` points towards `secondary_direction`.
    ///
    /// For example, if a spaceship model has its nose pointing in the X-direction in its own local coordinates
    /// and its dorsal fin pointing in the Y-direction, then `align(Dir3::X, v, Dir3::Y, w)` will make the spaceship's
    /// nose point in the direction of `v`, while the dorsal fin does its best to point in the direction `w`.
    ///
    /// More precisely, the [`Transform::rotation`] produced will be such that:
    /// * applying it to `main_axis` results in `main_direction`
    /// * applying it to `secondary_axis` produces a vector that lies in the half-plane generated by `main_direction` and
    ///     `secondary_direction` (with positive contribution by `secondary_direction`)
    ///
    /// [`Transform::look_to`] is recovered, for instance, when `main_axis` is `Dir3::NEG_Z` (the [`Transform::forward`]
    /// direction in the default orientation) and `secondary_axis` is `Dir3::Y` (the [`Transform::up`] direction in the default
    /// orientation). (Failure cases may differ somewhat.)
    ///
    /// In some cases a rotation cannot be constructed. Another axis will be picked in those cases:
    /// * if `main_axis` or `main_direction` fail converting to `Dir3` (e.g are zero), `Dir3::X` takes their place
    /// * if `secondary_axis` or `secondary_direction` fail converting, `Dir3::Y` takes their place
    /// * if `main_axis` is parallel with `secondary_axis` or `main_direction` is parallel with `secondary_direction`,
    ///     a rotation is constructed which takes `main_axis` to `main_direction` along a great circle, ignoring the secondary
    ///     counterparts
    ///
    /// Example
    /// ```
    /// # use bevy_math::{Dir3, Vec3, Quat};
    /// # use bevy_transform::components::Transform;
    /// # let mut t1 = Transform::IDENTITY;
    /// # let mut t2 = Transform::IDENTITY;
    /// t1.align(Dir3::X, Dir3::Y, Vec3::new(1., 1., 0.), Dir3::Z);
    /// let main_axis_image = t1.rotation * Dir3::X;
    /// let secondary_axis_image = t1.rotation * Vec3::new(1., 1., 0.);
    /// assert!(main_axis_image.abs_diff_eq(Vec3::Y, 1e-5));
    /// assert!(secondary_axis_image.abs_diff_eq(Vec3::new(0., 1., 1.), 1e-5));
    ///
    /// t1.align(Vec3::ZERO, Dir3::Z, Vec3::ZERO, Dir3::X);
    /// t2.align(Dir3::X, Dir3::Z, Dir3::Y, Dir3::X);
    /// assert_eq!(t1.rotation, t2.rotation);
    ///
    /// t1.align(Dir3::X, Dir3::Z, Dir3::X, Dir3::Y);
    /// assert_eq!(t1.rotation, Quat::from_rotation_arc(Vec3::X, Vec3::Z));
    /// ```
    #[inline]
    pub fn align(
        &mut self,
        main_axis: impl TryInto<Dir3>,
        main_direction: impl TryInto<Dir3>,
        secondary_axis: impl TryInto<Dir3>,
        secondary_direction: impl TryInto<Dir3>,
    ) {
        let main_axis = main_axis.try_into().unwrap_or(Dir3::X);
        let main_direction = main_direction.try_into().unwrap_or(Dir3::X);
        let secondary_axis = secondary_axis.try_into().unwrap_or(Dir3::Y);
        let secondary_direction = secondary_direction.try_into().unwrap_or(Dir3::Y);

        // The solution quaternion will be constructed in two steps.
        // First, we start with a rotation that takes `main_axis` to `main_direction`.
        let first_rotation = Quat::from_rotation_arc(main_axis.into(), main_direction.into());

        // Let's follow by rotating about the `main_direction` axis so that the image of `secondary_axis`
        // is taken to something that lies in the plane of `main_direction` and `secondary_direction`. Since
        // `main_direction` is fixed by this rotation, the first criterion is still satisfied.
        let secondary_image = first_rotation * secondary_axis;
        let secondary_image_ortho = secondary_image
            .reject_from_normalized(main_direction.into())
            .try_normalize();
        let secondary_direction_ortho = secondary_direction
            .reject_from_normalized(main_direction.into())
            .try_normalize();

        // If one of the two weak vectors was parallel to `main_direction`, then we just do the first part
        self.rotation = match (secondary_image_ortho, secondary_direction_ortho) {
            (Some(secondary_img_ortho), Some(secondary_dir_ortho)) => {
                let second_rotation =
                    Quat::from_rotation_arc(secondary_img_ortho, secondary_dir_ortho);
                second_rotation * first_rotation
            }
            _ => first_rotation,
        };
    }

    /// Multiplies `self` with `transform` component by component, returning the
    /// resulting [`Transform`]
    #[inline]
    #[must_use]
    pub fn mul_transform(&self, transform: Transform) -> Self {
        let translation = self.transform_point(transform.translation);
        let rotation = self.rotation * transform.rotation;
        let scale = self.scale * transform.scale;
        Transform {
            translation,
            rotation,
            scale,
        }
    }

    /// Transforms the given `point`, applying scale, rotation and translation.
    ///
    /// If this [`Transform`] has an ancestor entity with a [`Transform`] component,
    /// [`Transform::transform_point`] will transform a point in local space into its
    /// parent transform's space.
    ///
    /// If this [`Transform`] does not have a parent, [`Transform::transform_point`] will
    /// transform a point in local space into worldspace coordinates.
    ///
    /// If you always want to transform a point in local space to worldspace, or if you need
    /// the inverse transformations, see [`GlobalTransform::transform_point()`].
    #[inline]
    pub fn transform_point(&self, mut point: Vec3) -> Vec3 {
        point = self.scale * point;
        point = self.rotation * point;
        point += self.translation;
        point
    }

    /// Returns `true` if, and only if, translation, rotation and scale all are
    /// finite. If any of them contains a `NaN`, positive or negative infinity,
    /// this will return `false`.
    #[inline]
    #[must_use]
    pub fn is_finite(&self) -> bool {
        self.translation.is_finite() && self.rotation.is_finite() && self.scale.is_finite()
    }

    /// Get the [isometry] defined by this transform's rotation and translation, ignoring scale.
    ///
    /// [isometry]: Isometry3d
    #[inline]
    pub fn to_isometry(&self) -> Isometry3d {
        Isometry3d::new(self.translation, self.rotation)
    }
}

impl Default for Transform {
    fn default() -> Self {
        Self::IDENTITY
    }
}

/// The transform is expected to be non-degenerate and without shearing, or the output
/// will be invalid.
impl From<GlobalTransform> for Transform {
    fn from(transform: GlobalTransform) -> Self {
        transform.compute_transform()
    }
}

impl Mul<Transform> for Transform {
    type Output = Transform;

    fn mul(self, transform: Transform) -> Self::Output {
        self.mul_transform(transform)
    }
}

impl Mul<GlobalTransform> for Transform {
    type Output = GlobalTransform;

    #[inline]
    fn mul(self, global_transform: GlobalTransform) -> Self::Output {
        GlobalTransform::from(self) * global_transform
    }
}

impl Mul<Vec3> for Transform {
    type Output = Vec3;

    fn mul(self, value: Vec3) -> Self::Output {
        self.transform_point(value)
    }
}