fxhash/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

#![deny(missing_docs)]

//! # Fx Hash
//!
//! This hashing algorithm was extracted from the Rustc compiler.  This is the same hashing
//! algoirthm used for some internal operations in FireFox.  The strength of this algorithm
//! is in hashing 8 bytes at a time on 64-bit platforms, where the FNV algorithm works on one
//! byte at a time.
//!
//! ## Disclaimer
//!
//! It is **not a cryptographically secure** hash, so it is strongly recommended that you do
//! not use this hash for cryptographic purproses.  Furthermore, this hashing algorithm was
//! not designed to prevent any attacks for determining collisions which could be used to
//! potentially cause quadratic behavior in `HashMap`s.  So it is not recommended to expose
//! this hash in places where collissions or DDOS attacks may be a concern.

use std::collections::{HashMap, HashSet};
use std::default::Default;
use std::hash::{Hasher, Hash, BuildHasherDefault};
use std::ops::BitXor;

extern crate byteorder;
use byteorder::{ByteOrder, NativeEndian};

/// A builder for default Fx hashers.
pub type FxBuildHasher = BuildHasherDefault<FxHasher>;

/// A `HashMap` using a default Fx hasher.
pub type FxHashMap<K, V> = HashMap<K, V, FxBuildHasher>;

/// A `HashSet` using a default Fx hasher.
pub type FxHashSet<V> = HashSet<V, FxBuildHasher>;

const ROTATE: u32 = 5;
const SEED64: u64 = 0x517cc1b727220a95;
const SEED32: u32 = (SEED64 & 0xFFFF_FFFF) as u32;

#[cfg(target_pointer_width = "32")]
const SEED: usize = SEED32 as usize;
#[cfg(target_pointer_width = "64")]
const SEED: usize = SEED64 as usize;

trait HashWord {
    fn hash_word(&mut self, Self);
}

macro_rules! impl_hash_word {
    ($($ty:ty = $key:ident),* $(,)*) => (
        $(
            impl HashWord for $ty {
                #[inline]
                fn hash_word(&mut self, word: Self) {
                    *self = self.rotate_left(ROTATE).bitxor(word).wrapping_mul($key);
                }
            }
        )*
    )
}

impl_hash_word!(usize = SEED, u32 = SEED32, u64 = SEED64);

#[inline]
fn write32(mut hash: u32, mut bytes: &[u8]) -> u32 {
    while bytes.len() >= 4 {
        let n = NativeEndian::read_u32(bytes);
        hash.hash_word(n);
        bytes = bytes.split_at(4).1;
    }

    for byte in bytes {
        hash.hash_word(*byte as u32);
    }
    hash
}

#[inline]
fn write64(mut hash: u64, mut bytes: &[u8]) -> u64 {
    while bytes.len() >= 8 {
        let n = NativeEndian::read_u64(bytes);
        hash.hash_word(n);
        bytes = bytes.split_at(8).1;
    }

    if bytes.len() >= 4 {
        let n = NativeEndian::read_u32(bytes);
        hash.hash_word(n as u64);
        bytes = bytes.split_at(4).1;
    }

    for byte in bytes {
        hash.hash_word(*byte as u64);
    }
    hash
}

#[inline]
#[cfg(target_pointer_width = "32")]
fn write(hash: usize, bytes: &[u8]) -> usize {
    write32(hash as u32, bytes) as usize
}

#[inline]
#[cfg(target_pointer_width = "64")]
fn write(hash: usize, bytes: &[u8]) -> usize {
    write64(hash as u64, bytes) as usize
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 8 bytes at a time on 64-bit platforms,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher {
    hash: usize,
}

impl Default for FxHasher {
    #[inline]
    fn default() -> FxHasher {
        FxHasher { hash: 0 }
    }
}

impl Hasher for FxHasher {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    #[cfg(target_pointer_width = "32")]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as usize);
        self.hash.hash_word((i >> 32) as usize);
    }

    #[inline]
    #[cfg(target_pointer_width = "64")]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as usize);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash as u64
    }
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 8 bytes at a time on any platform,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher64 {
    hash: u64,
}

impl Default for FxHasher64 {
    #[inline]
    fn default() -> FxHasher64 {
        FxHasher64 { hash: 0 }
    }
}

impl Hasher for FxHasher64 {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write64(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i as u64);
    }

    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn write_usize(&mut self, i: usize) {
        self.hash.hash_word(i as u64);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash
    }
}

/// This hashing algorithm was extracted from the Rustc compiler.
/// This is the same hashing algoirthm used for some internal operations in FireFox.
/// The strength of this algorithm is in hashing 4 bytes at a time on any platform,
/// where the FNV algorithm works on one byte at a time.
///
/// This hashing algorithm should not be used for cryptographic, or in scenarios where
/// DOS attacks are a concern.
#[derive(Debug, Clone)]
pub struct FxHasher32 {
    hash: u32,
}

impl Default for FxHasher32 {
    #[inline]
    fn default() -> FxHasher32 {
        FxHasher32 { hash: 0 }
    }
}

impl Hasher for FxHasher32 {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        self.hash = write32(self.hash, bytes);
    }

    #[inline]
    fn write_u8(&mut self, i: u8) {
        self.hash.hash_word(i as u32);
    }

    #[inline]
    fn write_u16(&mut self, i: u16) {
        self.hash.hash_word(i as u32);
    }

    #[inline]
    fn write_u32(&mut self, i: u32) {
        self.hash.hash_word(i);
    }

    #[inline]
    fn write_u64(&mut self, i: u64) {
        self.hash.hash_word(i as u32);
        self.hash.hash_word((i >> 32) as u32);
    }

    #[inline]
    #[cfg(target_pointer_width = "32")]
    fn write_usize(&mut self, i: usize) {
        self.write_u32(i as u32);
    }

    #[inline]
    #[cfg(target_pointer_width = "64")]
    fn write_usize(&mut self, i: usize) {
        self.write_u64(i as u64);
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.hash as u64
    }
}

/// A convenience function for when you need a quick 64-bit hash.
#[inline]
pub fn hash64<T: Hash + ?Sized>(v: &T) -> u64 {
    let mut state = FxHasher64::default();
    v.hash(&mut state);
    state.finish()
}

/// A convenience function for when you need a quick 32-bit hash.
#[inline]
pub fn hash32<T: Hash + ?Sized>(v: &T) -> u32 {
    let mut state = FxHasher32::default();
    v.hash(&mut state);
    state.finish() as u32
}

/// A convenience function for when you need a quick usize hash.
#[inline]
pub fn hash<T: Hash + ?Sized>(v: &T) -> usize {
    let mut state = FxHasher::default();
    v.hash(&mut state);
    state.finish() as usize
}