1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// Generated from mat.rs.tera template. Edit the template, not the generated file.

use crate::{f64::math, swizzles::*, DMat3, DVec2, Mat2};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};

/// Creates a 2x2 matrix from two column vectors.
#[inline(always)]
#[must_use]
pub const fn dmat2(x_axis: DVec2, y_axis: DVec2) -> DMat2 {
    DMat2::from_cols(x_axis, y_axis)
}

/// A 2x2 column major matrix.
#[derive(Clone, Copy)]
#[cfg_attr(feature = "cuda", repr(align(16)))]
#[repr(C)]
pub struct DMat2 {
    pub x_axis: DVec2,
    pub y_axis: DVec2,
}

impl DMat2 {
    /// A 2x2 matrix with all elements set to `0.0`.
    pub const ZERO: Self = Self::from_cols(DVec2::ZERO, DVec2::ZERO);

    /// A 2x2 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
    pub const IDENTITY: Self = Self::from_cols(DVec2::X, DVec2::Y);

    /// All NAN:s.
    pub const NAN: Self = Self::from_cols(DVec2::NAN, DVec2::NAN);

    #[allow(clippy::too_many_arguments)]
    #[inline(always)]
    #[must_use]
    const fn new(m00: f64, m01: f64, m10: f64, m11: f64) -> Self {
        Self {
            x_axis: DVec2::new(m00, m01),
            y_axis: DVec2::new(m10, m11),
        }
    }

    /// Creates a 2x2 matrix from two column vectors.
    #[inline(always)]
    #[must_use]
    pub const fn from_cols(x_axis: DVec2, y_axis: DVec2) -> Self {
        Self { x_axis, y_axis }
    }

    /// Creates a 2x2 matrix from a `[f64; 4]` array stored in column major order.
    /// If your data is stored in row major you will need to `transpose` the returned
    /// matrix.
    #[inline]
    #[must_use]
    pub const fn from_cols_array(m: &[f64; 4]) -> Self {
        Self::new(m[0], m[1], m[2], m[3])
    }

    /// Creates a `[f64; 4]` array storing data in column major order.
    /// If you require data in row major order `transpose` the matrix first.
    #[inline]
    #[must_use]
    pub const fn to_cols_array(&self) -> [f64; 4] {
        [self.x_axis.x, self.x_axis.y, self.y_axis.x, self.y_axis.y]
    }

    /// Creates a 2x2 matrix from a `[[f64; 2]; 2]` 2D array stored in column major order.
    /// If your data is in row major order you will need to `transpose` the returned
    /// matrix.
    #[inline]
    #[must_use]
    pub const fn from_cols_array_2d(m: &[[f64; 2]; 2]) -> Self {
        Self::from_cols(DVec2::from_array(m[0]), DVec2::from_array(m[1]))
    }

    /// Creates a `[[f64; 2]; 2]` 2D array storing data in column major order.
    /// If you require data in row major order `transpose` the matrix first.
    #[inline]
    #[must_use]
    pub const fn to_cols_array_2d(&self) -> [[f64; 2]; 2] {
        [self.x_axis.to_array(), self.y_axis.to_array()]
    }

    /// Creates a 2x2 matrix with its diagonal set to `diagonal` and all other entries set to 0.
    #[doc(alias = "scale")]
    #[inline]
    #[must_use]
    pub const fn from_diagonal(diagonal: DVec2) -> Self {
        Self::new(diagonal.x, 0.0, 0.0, diagonal.y)
    }

    /// Creates a 2x2 matrix containing the combining non-uniform `scale` and rotation of
    /// `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_scale_angle(scale: DVec2, angle: f64) -> Self {
        let (sin, cos) = math::sin_cos(angle);
        Self::new(cos * scale.x, sin * scale.x, -sin * scale.y, cos * scale.y)
    }

    /// Creates a 2x2 matrix containing a rotation of `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_angle(angle: f64) -> Self {
        let (sin, cos) = math::sin_cos(angle);
        Self::new(cos, sin, -sin, cos)
    }

    /// Creates a 2x2 matrix from a 3x3 matrix, discarding the 2nd row and column.
    #[inline]
    #[must_use]
    pub fn from_mat3(m: DMat3) -> Self {
        Self::from_cols(m.x_axis.xy(), m.y_axis.xy())
    }

    /// Creates a 2x2 matrix from the first 4 values in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than 4 elements long.
    #[inline]
    #[must_use]
    pub const fn from_cols_slice(slice: &[f64]) -> Self {
        Self::new(slice[0], slice[1], slice[2], slice[3])
    }

    /// Writes the columns of `self` to the first 4 elements in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than 4 elements long.
    #[inline]
    pub fn write_cols_to_slice(self, slice: &mut [f64]) {
        slice[0] = self.x_axis.x;
        slice[1] = self.x_axis.y;
        slice[2] = self.y_axis.x;
        slice[3] = self.y_axis.y;
    }

    /// Returns the matrix column for the given `index`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater than 1.
    #[inline]
    #[must_use]
    pub fn col(&self, index: usize) -> DVec2 {
        match index {
            0 => self.x_axis,
            1 => self.y_axis,
            _ => panic!("index out of bounds"),
        }
    }

    /// Returns a mutable reference to the matrix column for the given `index`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater than 1.
    #[inline]
    pub fn col_mut(&mut self, index: usize) -> &mut DVec2 {
        match index {
            0 => &mut self.x_axis,
            1 => &mut self.y_axis,
            _ => panic!("index out of bounds"),
        }
    }

    /// Returns the matrix row for the given `index`.
    ///
    /// # Panics
    ///
    /// Panics if `index` is greater than 1.
    #[inline]
    #[must_use]
    pub fn row(&self, index: usize) -> DVec2 {
        match index {
            0 => DVec2::new(self.x_axis.x, self.y_axis.x),
            1 => DVec2::new(self.x_axis.y, self.y_axis.y),
            _ => panic!("index out of bounds"),
        }
    }

    /// Returns `true` if, and only if, all elements are finite.
    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
    #[inline]
    #[must_use]
    pub fn is_finite(&self) -> bool {
        self.x_axis.is_finite() && self.y_axis.is_finite()
    }

    /// Returns `true` if any elements are `NaN`.
    #[inline]
    #[must_use]
    pub fn is_nan(&self) -> bool {
        self.x_axis.is_nan() || self.y_axis.is_nan()
    }

    /// Returns the transpose of `self`.
    #[inline]
    #[must_use]
    pub fn transpose(&self) -> Self {
        Self {
            x_axis: DVec2::new(self.x_axis.x, self.y_axis.x),
            y_axis: DVec2::new(self.x_axis.y, self.y_axis.y),
        }
    }

    /// Returns the determinant of `self`.
    #[inline]
    #[must_use]
    pub fn determinant(&self) -> f64 {
        self.x_axis.x * self.y_axis.y - self.x_axis.y * self.y_axis.x
    }

    /// Returns the inverse of `self`.
    ///
    /// If the matrix is not invertible the returned matrix will be invalid.
    ///
    /// # Panics
    ///
    /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
    #[inline]
    #[must_use]
    pub fn inverse(&self) -> Self {
        let inv_det = {
            let det = self.determinant();
            glam_assert!(det != 0.0);
            det.recip()
        };
        Self::new(
            self.y_axis.y * inv_det,
            self.x_axis.y * -inv_det,
            self.y_axis.x * -inv_det,
            self.x_axis.x * inv_det,
        )
    }

    /// Transforms a 2D vector.
    #[inline]
    #[must_use]
    pub fn mul_vec2(&self, rhs: DVec2) -> DVec2 {
        #[allow(clippy::suspicious_operation_groupings)]
        DVec2::new(
            (self.x_axis.x * rhs.x) + (self.y_axis.x * rhs.y),
            (self.x_axis.y * rhs.x) + (self.y_axis.y * rhs.y),
        )
    }

    /// Multiplies two 2x2 matrices.
    #[inline]
    #[must_use]
    pub fn mul_mat2(&self, rhs: &Self) -> Self {
        Self::from_cols(self.mul(rhs.x_axis), self.mul(rhs.y_axis))
    }

    /// Adds two 2x2 matrices.
    #[inline]
    #[must_use]
    pub fn add_mat2(&self, rhs: &Self) -> Self {
        Self::from_cols(self.x_axis.add(rhs.x_axis), self.y_axis.add(rhs.y_axis))
    }

    /// Subtracts two 2x2 matrices.
    #[inline]
    #[must_use]
    pub fn sub_mat2(&self, rhs: &Self) -> Self {
        Self::from_cols(self.x_axis.sub(rhs.x_axis), self.y_axis.sub(rhs.y_axis))
    }

    /// Multiplies a 2x2 matrix by a scalar.
    #[inline]
    #[must_use]
    pub fn mul_scalar(&self, rhs: f64) -> Self {
        Self::from_cols(self.x_axis.mul(rhs), self.y_axis.mul(rhs))
    }

    /// Divides a 2x2 matrix by a scalar.
    #[inline]
    #[must_use]
    pub fn div_scalar(&self, rhs: f64) -> Self {
        let rhs = DVec2::splat(rhs);
        Self::from_cols(self.x_axis.div(rhs), self.y_axis.div(rhs))
    }

    /// Returns true if the absolute difference of all elements between `self` and `rhs`
    /// is less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two matrices contain similar elements. It works best
    /// when comparing with a known value. The `max_abs_diff` that should be used used
    /// depends on the values being compared against.
    ///
    /// For more see
    /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
    #[inline]
    #[must_use]
    pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
        self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
            && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
    }

    /// Takes the absolute value of each element in `self`
    #[inline]
    #[must_use]
    pub fn abs(&self) -> Self {
        Self::from_cols(self.x_axis.abs(), self.y_axis.abs())
    }

    #[inline]
    pub fn as_mat2(&self) -> Mat2 {
        Mat2::from_cols(self.x_axis.as_vec2(), self.y_axis.as_vec2())
    }
}

impl Default for DMat2 {
    #[inline]
    fn default() -> Self {
        Self::IDENTITY
    }
}

impl Add<DMat2> for DMat2 {
    type Output = Self;
    #[inline]
    fn add(self, rhs: Self) -> Self::Output {
        self.add_mat2(&rhs)
    }
}

impl AddAssign<DMat2> for DMat2 {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        *self = self.add_mat2(&rhs);
    }
}

impl Sub<DMat2> for DMat2 {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: Self) -> Self::Output {
        self.sub_mat2(&rhs)
    }
}

impl SubAssign<DMat2> for DMat2 {
    #[inline]
    fn sub_assign(&mut self, rhs: Self) {
        *self = self.sub_mat2(&rhs);
    }
}

impl Neg for DMat2 {
    type Output = Self;
    #[inline]
    fn neg(self) -> Self::Output {
        Self::from_cols(self.x_axis.neg(), self.y_axis.neg())
    }
}

impl Mul<DMat2> for DMat2 {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: Self) -> Self::Output {
        self.mul_mat2(&rhs)
    }
}

impl MulAssign<DMat2> for DMat2 {
    #[inline]
    fn mul_assign(&mut self, rhs: Self) {
        *self = self.mul_mat2(&rhs);
    }
}

impl Mul<DVec2> for DMat2 {
    type Output = DVec2;
    #[inline]
    fn mul(self, rhs: DVec2) -> Self::Output {
        self.mul_vec2(rhs)
    }
}

impl Mul<DMat2> for f64 {
    type Output = DMat2;
    #[inline]
    fn mul(self, rhs: DMat2) -> Self::Output {
        rhs.mul_scalar(self)
    }
}

impl Mul<f64> for DMat2 {
    type Output = Self;
    #[inline]
    fn mul(self, rhs: f64) -> Self::Output {
        self.mul_scalar(rhs)
    }
}

impl MulAssign<f64> for DMat2 {
    #[inline]
    fn mul_assign(&mut self, rhs: f64) {
        *self = self.mul_scalar(rhs);
    }
}

impl Div<DMat2> for f64 {
    type Output = DMat2;
    #[inline]
    fn div(self, rhs: DMat2) -> Self::Output {
        rhs.div_scalar(self)
    }
}

impl Div<f64> for DMat2 {
    type Output = Self;
    #[inline]
    fn div(self, rhs: f64) -> Self::Output {
        self.div_scalar(rhs)
    }
}

impl DivAssign<f64> for DMat2 {
    #[inline]
    fn div_assign(&mut self, rhs: f64) {
        *self = self.div_scalar(rhs);
    }
}

impl Sum<Self> for DMat2 {
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        iter.fold(Self::ZERO, Self::add)
    }
}

impl<'a> Sum<&'a Self> for DMat2 {
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
    }
}

impl Product for DMat2 {
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        iter.fold(Self::IDENTITY, Self::mul)
    }
}

impl<'a> Product<&'a Self> for DMat2 {
    fn product<I>(iter: I) -> Self
    where
        I: Iterator<Item = &'a Self>,
    {
        iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
    }
}

impl PartialEq for DMat2 {
    #[inline]
    fn eq(&self, rhs: &Self) -> bool {
        self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis)
    }
}

#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f64; 4]> for DMat2 {
    #[inline]
    fn as_ref(&self) -> &[f64; 4] {
        unsafe { &*(self as *const Self as *const [f64; 4]) }
    }
}

#[cfg(not(target_arch = "spirv"))]
impl AsMut<[f64; 4]> for DMat2 {
    #[inline]
    fn as_mut(&mut self) -> &mut [f64; 4] {
        unsafe { &mut *(self as *mut Self as *mut [f64; 4]) }
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for DMat2 {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct(stringify!(DMat2))
            .field("x_axis", &self.x_axis)
            .field("y_axis", &self.y_axis)
            .finish()
    }
}

#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for DMat2 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(p) = f.precision() {
            write!(f, "[{:.*}, {:.*}]", p, self.x_axis, p, self.y_axis)
        } else {
            write!(f, "[{}, {}]", self.x_axis, self.y_axis)
        }
    }
}