glam_matrix_extras/eigen/
symmetric_eigen3.rs

1// The eigensolver is a Rust adaptation, with modifications, of the pseudocode and approach described in
2// "A Robust Eigensolver for 3 x 3 Symmetric Matrices" by David Eberly, Geometric Tools, Redmond WA 98052.
3// https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf
4
5use crate::{
6    SymmetricMat3,
7    ops::{self, FloatPow},
8};
9use glam::{Mat3, Vec3, Vec3Swizzles};
10
11/// The [eigen decomposition] of a [`SymmetricMat3`].
12///
13/// [eigen decomposition]: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
14#[derive(Clone, Copy, Debug, PartialEq)]
15#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
16#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
17pub struct SymmetricEigen3 {
18    /// The eigenvalues of the [`SymmetricMat3`].
19    ///
20    /// These should be in ascending order `eigen1 <= eigen2 <= eigen3`.
21    pub eigenvalues: Vec3,
22    /// The three eigenvectors of the [`SymmetricMat3`].
23    /// They should be unit length and orthogonal to the other eigenvectors.
24    ///
25    /// The eigenvectors are ordered to correspond to the eigenvalues. For example,
26    /// `eigenvectors.x_axis` corresponds to `eigenvalues.x`.
27    pub eigenvectors: Mat3,
28}
29
30impl SymmetricEigen3 {
31    /// Computes the eigen decomposition of the given [`SymmetricMat3`].
32    ///
33    /// The eigenvalues are returned in ascending order `eigen1 <= eigen2 <= eigen3`.
34    /// This can be reversed with the [`reverse`](Self::reverse) method.
35    pub fn new(mat: SymmetricMat3) -> Self {
36        let (mut eigenvalues, is_diagonal) = Self::eigenvalues(mat);
37
38        if is_diagonal {
39            // The matrix is already diagonal. Sort the eigenvalues in ascending order,
40            // ordering the eigenvectors accordingly, and return early.
41            let mut eigenvectors = Mat3::IDENTITY;
42            if eigenvalues[0] > eigenvalues[1] {
43                core::mem::swap(&mut eigenvalues.x, &mut eigenvalues.y);
44                core::mem::swap(&mut eigenvectors.x_axis, &mut eigenvectors.y_axis);
45            }
46            if eigenvalues[1] > eigenvalues[2] {
47                core::mem::swap(&mut eigenvalues.y, &mut eigenvalues.z);
48                core::mem::swap(&mut eigenvectors.y_axis, &mut eigenvectors.z_axis);
49            }
50            return Self {
51                eigenvalues,
52                eigenvectors,
53            };
54        }
55
56        // Compute the eigenvectors corresponding to the eigenvalues.
57        let eigenvector1 = Self::eigenvector1(mat, eigenvalues.x);
58        let eigenvector2 = Self::eigenvector2(mat, eigenvector1, eigenvalues.y);
59        let eigenvector3 = Self::eigenvector3(eigenvector1, eigenvector2);
60
61        Self {
62            eigenvalues,
63            eigenvectors: Mat3::from_cols(eigenvector1, eigenvector2, eigenvector3),
64        }
65    }
66
67    /// Reverses the order of the eigenvalues and their corresponding eigenvectors.
68    pub fn reverse(&self) -> Self {
69        Self {
70            eigenvalues: self.eigenvalues.zyx(),
71            eigenvectors: Mat3::from_cols(
72                self.eigenvectors.z_axis,
73                self.eigenvectors.y_axis,
74                self.eigenvectors.x_axis,
75            ),
76        }
77    }
78
79    /// Computes the eigenvalues of a [`SymmetricMat3`], also returning whether the input matrix is diagonal.
80    ///
81    /// If the matrix is already diagonal, the eigenvalues are returned as is without reordering.
82    /// Otherwise, the eigenvalues are computed and returned in ascending order
83    /// such that `eigen1 <= eigen2 <= eigen3`.
84    pub fn eigenvalues(mat: SymmetricMat3) -> (Vec3, bool) {
85        // Reference: https://en.wikipedia.org/wiki/Eigenvalue_algorithm#Symmetric_3%C3%973_matrices
86
87        let p1 = mat.m01.squared() + mat.m02.squared() + mat.m12.squared();
88
89        // Check if the matrix is nearly diagonal.
90        // Without this check, the algorithm can produce NaN values.
91        // TODO: What is the ideal threshold here?
92        if p1 < 1e-10 {
93            return (Vec3::new(mat.m00, mat.m11, mat.m22), true);
94        }
95
96        let q = (mat.m00 + mat.m11 + mat.m22) / 3.0;
97        let p2 =
98            (mat.m00 - q).squared() + (mat.m11 - q).squared() + (mat.m22 - q).squared() + 2.0 * p1;
99        let p = ops::sqrt(p2 / 6.0);
100
101        let mat_b = 1.0 / p * (mat - q * Mat3::IDENTITY);
102        let r = mat_b.determinant() / 2.0;
103
104        // r should be in the [-1, 1] range for a symmetric matrix,
105        // but computation error can leave it slightly outside this range.
106        let phi = if r <= -1.0 {
107            core::f32::consts::FRAC_PI_3
108        } else if r >= 1.0 {
109            0.0
110        } else {
111            ops::acos(r) / 3.0
112        };
113
114        // The eigenvalues satisfy eigen3 <= eigen2 <= eigen1
115        let eigen1 = q + 2.0 * p * ops::cos(phi);
116        let eigen3 = q + 2.0 * p * ops::cos(phi + 2.0 * core::f32::consts::FRAC_PI_3);
117        let eigen2 = 3.0 * q - eigen1 - eigen3; // trace(mat) = eigen1 + eigen2 + eigen3
118        (Vec3::new(eigen3, eigen2, eigen1), false)
119    }
120
121    // TODO: Fall back to QL when the eigenvalue precision is poor.
122    /// Computes the unit-length eigenvector corresponding to the `eigenvalue1` of `mat` that was
123    /// computed from the root of a cubic polynomial with a multiplicity of 1.
124    ///
125    /// If the other two eigenvalues are well separated, this method can be used for computing
126    /// all three eigenvectors. However, to avoid numerical issues when eigenvalues are close to
127    /// each other, it's recommended to use the `eigenvector2` method for the second eigenvector.
128    ///
129    /// The third eigenvector can be computed as the cross product of the first two.
130    pub fn eigenvector1(mat: SymmetricMat3, eigenvalue1: f32) -> Vec3 {
131        let cols = (mat - SymmetricMat3::from_diagonal(Vec3::splat(eigenvalue1))).to_mat3();
132        let c0xc1 = cols.x_axis.cross(cols.y_axis);
133        let c0xc2 = cols.x_axis.cross(cols.z_axis);
134        let c1xc2 = cols.y_axis.cross(cols.z_axis);
135        let d0 = c0xc1.length_squared();
136        let d1 = c0xc2.length_squared();
137        let d2 = c1xc2.length_squared();
138
139        let mut d_max = d0;
140        let mut i_max = 0;
141
142        if d1 > d_max {
143            d_max = d1;
144            i_max = 1;
145        }
146        if d2 > d_max {
147            i_max = 2;
148        }
149        if i_max == 0 {
150            c0xc1 / ops::sqrt(d0)
151        } else if i_max == 1 {
152            c0xc2 / ops::sqrt(d1)
153        } else {
154            c1xc2 / ops::sqrt(d2)
155        }
156    }
157
158    /// Computes the unit-length eigenvector corresponding to the `eigenvalue2` of `mat` that was
159    /// computed from the root of a cubic polynomial with a potential multiplicity of 2.
160    ///
161    /// The third eigenvector can be computed as the cross product of the first two.
162    pub fn eigenvector2(mat: SymmetricMat3, eigenvector1: Vec3, eigenvalue2: f32) -> Vec3 {
163        // Compute right-handed orthonormal set { U, V, W }, where W is eigenvector1.
164        let (u, v) = eigenvector1.any_orthonormal_pair();
165
166        // The unit-length eigenvector is E = x0 * U + x1 * V. We need to compute x0 and x1.
167        //
168        // Define the symmetrix 2x2 matrix M = J^T * (mat - eigenvalue2 * I), where J = [U V]
169        // and I is a 3x3 identity matrix. This means that E = J * X, where X is a column vector
170        // with rows x0 and x1. The 3x3 linear system (mat - eigenvalue2 * I) * E = 0 reduces to
171        // the 2x2 linear system M * X = 0.
172        //
173        // When eigenvalue2 != eigenvalue3, M has rank 1 and is not the zero matrix.
174        // Otherwise, it has rank 0, and it is the zero matrix.
175
176        let au = mat * u;
177        let av = mat * v;
178
179        let mut m00 = u.dot(au) - eigenvalue2;
180        let mut m01 = u.dot(av);
181        let mut m11 = v.dot(av) - eigenvalue2;
182        let (abs_m00, abs_m01, abs_m11) = (ops::abs(m00), ops::abs(m01), ops::abs(m11));
183
184        if abs_m00 >= abs_m11 {
185            let max_abs_component = abs_m00.max(abs_m01);
186            if max_abs_component > 0.0 {
187                if abs_m00 >= abs_m01 {
188                    // m00 is the largest component of the row.
189                    // Factor it out for normalization and discard to avoid underflow or overflow.
190                    m01 /= m00;
191                    m00 = 1.0 / ops::sqrt(1.0 + m01 * m01);
192                    m01 *= m00;
193                } else {
194                    // m01 is the largest component of the row.
195                    // Factor it out for normalization and discard to avoid underflow or overflow.
196                    m00 /= m01;
197                    m01 = 1.0 / ops::sqrt(1.0 + m00 * m00);
198                    m00 *= m01;
199                }
200                return m01 * u - m00 * v;
201            }
202        } else {
203            let max_abs_component = abs_m11.max(abs_m01);
204            if max_abs_component > 0.0 {
205                if abs_m11 >= abs_m01 {
206                    // m11 is the largest component of the row.
207                    // Factor it out for normalization and discard to avoid underflow or overflow.
208                    m01 /= m11;
209                    m11 = 1.0 / ops::sqrt(1.0 + m01 * m01);
210                    m01 *= m11;
211                } else {
212                    // m01 is the largest component of the row.
213                    // Factor it out for normalization and discard to avoid underflow or overflow.
214                    m11 /= m01;
215                    m01 = 1.0 / ops::sqrt(1.0 + m11 * m11);
216                    m11 *= m01;
217                }
218                return m11 * u - m01 * v;
219            }
220        }
221
222        // M is the zero matrix, any unit-length solution suffices.
223        u
224    }
225
226    /// Computes the third eigenvector as the cross product of the first two.
227    /// If the given eigenvectors are valid, the returned vector should be unit length.
228    pub fn eigenvector3(eigenvector1: Vec3, eigenvector2: Vec3) -> Vec3 {
229        eigenvector1.cross(eigenvector2)
230    }
231}
232
233#[cfg(test)]
234mod test {
235    use super::SymmetricEigen3;
236    use crate::SymmetricMat3;
237    use approx::assert_relative_eq;
238    use glam::{Mat3, Vec3};
239    use rand::{Rng, SeedableRng};
240
241    #[test]
242    fn eigen_3x3() {
243        let mat = SymmetricMat3::new(2.0, 7.0, 8.0, 6.0, 3.0, 0.0);
244        let eigen = SymmetricEigen3::new(mat);
245
246        assert_relative_eq!(
247            eigen.eigenvalues,
248            Vec3::new(-7.605, 0.577, 15.028),
249            epsilon = 0.001
250        );
251        assert_relative_eq!(
252            Mat3::from_cols(
253                eigen.eigenvectors.x_axis.abs(),
254                eigen.eigenvectors.y_axis.abs(),
255                eigen.eigenvectors.z_axis.abs()
256            ),
257            Mat3::from_cols(
258                Vec3::new(-1.075, 0.333, 1.0).normalize().abs(),
259                Vec3::new(0.542, -1.253, 1.0).normalize().abs(),
260                Vec3::new(1.359, 1.386, 1.0).normalize().abs()
261            ),
262            epsilon = 0.001
263        );
264    }
265
266    #[test]
267    fn eigen_3x3_diagonal() {
268        let mat = SymmetricMat3::from_diagonal(Vec3::new(2.0, 5.0, 3.0));
269        let eigen = SymmetricEigen3::new(mat);
270
271        assert_eq!(eigen.eigenvalues, Vec3::new(2.0, 3.0, 5.0));
272        assert_eq!(
273            Mat3::from_cols(
274                eigen.eigenvectors.x_axis.normalize().abs(),
275                eigen.eigenvectors.y_axis.normalize().abs(),
276                eigen.eigenvectors.z_axis.normalize().abs()
277            ),
278            Mat3::from_cols_array_2d(&[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]])
279        );
280    }
281
282    #[test]
283    fn eigen_3x3_reconstruction() {
284        let mut rng = rand_chacha::ChaCha8Rng::from_seed(Default::default());
285
286        // Generate random symmetric matrices and verify that the eigen decomposition is correct.
287        for _ in 0..10_000 {
288            let eigenvalues = Vec3::new(
289                rng.random_range(0.1..100.0),
290                rng.random_range(0.1..100.0),
291                rng.random_range(0.1..100.0),
292            );
293            let eigenvectors = Mat3::from_cols(
294                Vec3::new(
295                    rng.random_range(-1.0..1.0),
296                    rng.random_range(-1.0..1.0),
297                    rng.random_range(-1.0..1.0),
298                )
299                .normalize(),
300                Vec3::new(
301                    rng.random_range(-1.0..1.0),
302                    rng.random_range(-1.0..1.0),
303                    rng.random_range(-1.0..1.0),
304                )
305                .normalize(),
306                Vec3::new(
307                    rng.random_range(-1.0..1.0),
308                    rng.random_range(-1.0..1.0),
309                    rng.random_range(-1.0..1.0),
310                )
311                .normalize(),
312            );
313
314            // Construct the symmetric matrix from the eigenvalues and eigenvectors.
315            let mat1 = eigenvectors * Mat3::from_diagonal(eigenvalues) * eigenvectors.transpose();
316
317            // Compute the eigen decomposition of the constructed matrix.
318            let eigen = SymmetricEigen3::new(SymmetricMat3::from_mat3_unchecked(mat1));
319
320            // Reconstruct the matrix from the computed eigenvalues and eigenvectors.
321            let mat2 = eigen.eigenvectors
322                * Mat3::from_diagonal(eigen.eigenvalues)
323                * eigen.eigenvectors.transpose();
324
325            // The reconstructed matrix should be close to the original matrix.
326            // Note: The precision depends on how large the eigenvalues are.
327            //       Larger eigenvalues can lead to larger absolute error.
328            assert_relative_eq!(mat1, mat2, epsilon = 1e-2);
329        }
330    }
331
332    #[test]
333    fn eigen_pathological() {
334        // The algorithm sometimes produces NaN eigenvalues and eigenvectors for matrices
335        // that are already nearly diagonal. There is a diagonality check that should avoid this.
336        let mat = SymmetricMat3 {
337            m00: 5.3333335,
338            m01: 3.4465857e-20,
339            m02: 0.0,
340            m11: 5.3333335,
341            m12: 0.0,
342            m22: 5.3333335,
343        };
344        let eigen = SymmetricEigen3::new(mat);
345        assert_relative_eq!(eigen.eigenvalues, Vec3::splat(5.3333335), epsilon = 1e-6);
346        assert_relative_eq!(
347            eigen.eigenvectors.x_axis.abs(),
348            Vec3::new(1.0, 0.0, 0.0),
349            epsilon = 1e-6
350        );
351        assert_relative_eq!(
352            eigen.eigenvectors.y_axis.abs(),
353            Vec3::new(0.0, 1.0, 0.0),
354            epsilon = 1e-6
355        );
356        assert_relative_eq!(
357            eigen.eigenvectors.z_axis.abs(),
358            Vec3::new(0.0, 0.0, 1.0),
359            epsilon = 1e-6
360        );
361    }
362}