glam_matrix_extras/eigen/symmetric_eigen3.rs
1// The eigensolver is a Rust adaptation, with modifications, of the pseudocode and approach described in
2// "A Robust Eigensolver for 3 x 3 Symmetric Matrices" by David Eberly, Geometric Tools, Redmond WA 98052.
3// https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf
4
5use crate::{
6 SymmetricMat3,
7 ops::{self, FloatPow},
8};
9use glam::{Mat3, Vec3, Vec3Swizzles};
10
11/// The [eigen decomposition] of a [`SymmetricMat3`].
12///
13/// [eigen decomposition]: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
14#[derive(Clone, Copy, Debug, PartialEq)]
15#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
16#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
17pub struct SymmetricEigen3 {
18 /// The eigenvalues of the [`SymmetricMat3`].
19 ///
20 /// These should be in ascending order `eigen1 <= eigen2 <= eigen3`.
21 pub eigenvalues: Vec3,
22 /// The three eigenvectors of the [`SymmetricMat3`].
23 /// They should be unit length and orthogonal to the other eigenvectors.
24 ///
25 /// The eigenvectors are ordered to correspond to the eigenvalues. For example,
26 /// `eigenvectors.x_axis` corresponds to `eigenvalues.x`.
27 pub eigenvectors: Mat3,
28}
29
30impl SymmetricEigen3 {
31 /// Computes the eigen decomposition of the given [`SymmetricMat3`].
32 ///
33 /// The eigenvalues are returned in ascending order `eigen1 <= eigen2 <= eigen3`.
34 /// This can be reversed with the [`reverse`](Self::reverse) method.
35 pub fn new(mat: SymmetricMat3) -> Self {
36 let (mut eigenvalues, is_diagonal) = Self::eigenvalues(mat);
37
38 if is_diagonal {
39 // The matrix is already diagonal. Sort the eigenvalues in ascending order,
40 // ordering the eigenvectors accordingly, and return early.
41 let mut eigenvectors = Mat3::IDENTITY;
42 if eigenvalues[0] > eigenvalues[1] {
43 core::mem::swap(&mut eigenvalues.x, &mut eigenvalues.y);
44 core::mem::swap(&mut eigenvectors.x_axis, &mut eigenvectors.y_axis);
45 }
46 if eigenvalues[1] > eigenvalues[2] {
47 core::mem::swap(&mut eigenvalues.y, &mut eigenvalues.z);
48 core::mem::swap(&mut eigenvectors.y_axis, &mut eigenvectors.z_axis);
49 }
50 if eigenvalues[0] > eigenvalues[1] {
51 core::mem::swap(&mut eigenvalues.x, &mut eigenvalues.y);
52 core::mem::swap(&mut eigenvectors.x_axis, &mut eigenvectors.y_axis);
53 }
54 return Self {
55 eigenvalues,
56 eigenvectors,
57 };
58 }
59
60 // Compute the eigenvectors corresponding to the eigenvalues.
61 let eigenvector1 = Self::eigenvector1(mat, eigenvalues.x);
62 let eigenvector2 = Self::eigenvector2(mat, eigenvector1, eigenvalues.y);
63 let eigenvector3 = Self::eigenvector3(eigenvector1, eigenvector2);
64
65 Self {
66 eigenvalues,
67 eigenvectors: Mat3::from_cols(eigenvector1, eigenvector2, eigenvector3),
68 }
69 }
70
71 /// Reverses the order of the eigenvalues and their corresponding eigenvectors.
72 pub fn reverse(&self) -> Self {
73 Self {
74 eigenvalues: self.eigenvalues.zyx(),
75 eigenvectors: Mat3::from_cols(
76 self.eigenvectors.z_axis,
77 self.eigenvectors.y_axis,
78 self.eigenvectors.x_axis,
79 ),
80 }
81 }
82
83 /// Computes the eigenvalues of a [`SymmetricMat3`], also returning whether the input matrix is diagonal.
84 ///
85 /// If the matrix is already diagonal, the eigenvalues are returned as is without reordering.
86 /// Otherwise, the eigenvalues are computed and returned in ascending order
87 /// such that `eigen1 <= eigen2 <= eigen3`.
88 pub fn eigenvalues(mat: SymmetricMat3) -> (Vec3, bool) {
89 // Reference: https://en.wikipedia.org/wiki/Eigenvalue_algorithm#Symmetric_3%C3%973_matrices
90
91 let p1 = mat.m01.squared() + mat.m02.squared() + mat.m12.squared();
92
93 // Check if the matrix is nearly diagonal.
94 // Without this check, the algorithm can produce NaN values.
95 // TODO: What is the ideal threshold here?
96 if p1 < 1e-10 {
97 return (Vec3::new(mat.m00, mat.m11, mat.m22), true);
98 }
99
100 let q = (mat.m00 + mat.m11 + mat.m22) / 3.0;
101 let p2 =
102 (mat.m00 - q).squared() + (mat.m11 - q).squared() + (mat.m22 - q).squared() + 2.0 * p1;
103 let p = ops::sqrt(p2 / 6.0);
104
105 let mat_b = 1.0 / p * (mat - q * Mat3::IDENTITY);
106 let r = mat_b.determinant() / 2.0;
107
108 // r should be in the [-1, 1] range for a symmetric matrix,
109 // but computation error can leave it slightly outside this range.
110 let phi = if r <= -1.0 {
111 core::f32::consts::FRAC_PI_3
112 } else if r >= 1.0 {
113 0.0
114 } else {
115 ops::acos(r) / 3.0
116 };
117
118 // The eigenvalues satisfy eigen3 <= eigen2 <= eigen1
119 let eigen1 = q + 2.0 * p * ops::cos(phi);
120 let eigen3 = q + 2.0 * p * ops::cos(phi + 2.0 * core::f32::consts::FRAC_PI_3);
121 let eigen2 = 3.0 * q - eigen1 - eigen3; // trace(mat) = eigen1 + eigen2 + eigen3
122 (Vec3::new(eigen3, eigen2, eigen1), false)
123 }
124
125 // TODO: Fall back to QL when the eigenvalue precision is poor.
126 /// Computes the unit-length eigenvector corresponding to the `eigenvalue1` of `mat` that was
127 /// computed from the root of a cubic polynomial with a multiplicity of 1.
128 ///
129 /// If the other two eigenvalues are well separated, this method can be used for computing
130 /// all three eigenvectors. However, to avoid numerical issues when eigenvalues are close to
131 /// each other, it's recommended to use the `eigenvector2` method for the second eigenvector.
132 ///
133 /// The third eigenvector can be computed as the cross product of the first two.
134 pub fn eigenvector1(mat: SymmetricMat3, eigenvalue1: f32) -> Vec3 {
135 let cols = (mat - SymmetricMat3::from_diagonal(Vec3::splat(eigenvalue1))).to_mat3();
136 let c0xc1 = cols.x_axis.cross(cols.y_axis);
137 let c0xc2 = cols.x_axis.cross(cols.z_axis);
138 let c1xc2 = cols.y_axis.cross(cols.z_axis);
139 let d0 = c0xc1.length_squared();
140 let d1 = c0xc2.length_squared();
141 let d2 = c1xc2.length_squared();
142
143 let mut d_max = d0;
144 let mut i_max = 0;
145
146 if d1 > d_max {
147 d_max = d1;
148 i_max = 1;
149 }
150 if d2 > d_max {
151 i_max = 2;
152 }
153 if i_max == 0 {
154 c0xc1 / ops::sqrt(d0)
155 } else if i_max == 1 {
156 c0xc2 / ops::sqrt(d1)
157 } else {
158 c1xc2 / ops::sqrt(d2)
159 }
160 }
161
162 /// Computes the unit-length eigenvector corresponding to the `eigenvalue2` of `mat` that was
163 /// computed from the root of a cubic polynomial with a potential multiplicity of 2.
164 ///
165 /// The third eigenvector can be computed as the cross product of the first two.
166 pub fn eigenvector2(mat: SymmetricMat3, eigenvector1: Vec3, eigenvalue2: f32) -> Vec3 {
167 // Compute right-handed orthonormal set { U, V, W }, where W is eigenvector1.
168 let (u, v) = eigenvector1.any_orthonormal_pair();
169
170 // The unit-length eigenvector is E = x0 * U + x1 * V. We need to compute x0 and x1.
171 //
172 // Define the symmetrix 2x2 matrix M = J^T * (mat - eigenvalue2 * I), where J = [U V]
173 // and I is a 3x3 identity matrix. This means that E = J * X, where X is a column vector
174 // with rows x0 and x1. The 3x3 linear system (mat - eigenvalue2 * I) * E = 0 reduces to
175 // the 2x2 linear system M * X = 0.
176 //
177 // When eigenvalue2 != eigenvalue3, M has rank 1 and is not the zero matrix.
178 // Otherwise, it has rank 0, and it is the zero matrix.
179
180 let au = mat * u;
181 let av = mat * v;
182
183 let mut m00 = u.dot(au) - eigenvalue2;
184 let mut m01 = u.dot(av);
185 let mut m11 = v.dot(av) - eigenvalue2;
186 let (abs_m00, abs_m01, abs_m11) = (ops::abs(m00), ops::abs(m01), ops::abs(m11));
187
188 if abs_m00 >= abs_m11 {
189 let max_abs_component = abs_m00.max(abs_m01);
190 if max_abs_component > 0.0 {
191 if abs_m00 >= abs_m01 {
192 // m00 is the largest component of the row.
193 // Factor it out for normalization and discard to avoid underflow or overflow.
194 m01 /= m00;
195 m00 = 1.0 / ops::sqrt(1.0 + m01 * m01);
196 m01 *= m00;
197 } else {
198 // m01 is the largest component of the row.
199 // Factor it out for normalization and discard to avoid underflow or overflow.
200 m00 /= m01;
201 m01 = 1.0 / ops::sqrt(1.0 + m00 * m00);
202 m00 *= m01;
203 }
204 return m01 * u - m00 * v;
205 }
206 } else {
207 let max_abs_component = abs_m11.max(abs_m01);
208 if max_abs_component > 0.0 {
209 if abs_m11 >= abs_m01 {
210 // m11 is the largest component of the row.
211 // Factor it out for normalization and discard to avoid underflow or overflow.
212 m01 /= m11;
213 m11 = 1.0 / ops::sqrt(1.0 + m01 * m01);
214 m01 *= m11;
215 } else {
216 // m01 is the largest component of the row.
217 // Factor it out for normalization and discard to avoid underflow or overflow.
218 m11 /= m01;
219 m01 = 1.0 / ops::sqrt(1.0 + m11 * m11);
220 m11 *= m01;
221 }
222 return m11 * u - m01 * v;
223 }
224 }
225
226 // M is the zero matrix, any unit-length solution suffices.
227 u
228 }
229
230 /// Computes the third eigenvector as the cross product of the first two.
231 /// If the given eigenvectors are valid, the returned vector should be unit length.
232 pub fn eigenvector3(eigenvector1: Vec3, eigenvector2: Vec3) -> Vec3 {
233 eigenvector1.cross(eigenvector2)
234 }
235}
236
237#[cfg(test)]
238mod test {
239 use super::SymmetricEigen3;
240 use crate::SymmetricMat3;
241 use approx::assert_relative_eq;
242 use glam::{Mat3, Vec3};
243 use rand::{Rng, SeedableRng};
244
245 #[test]
246 fn eigen_3x3() {
247 let mat = SymmetricMat3::new(2.0, 7.0, 8.0, 6.0, 3.0, 0.0);
248 let eigen = SymmetricEigen3::new(mat);
249
250 assert_relative_eq!(
251 eigen.eigenvalues,
252 Vec3::new(-7.605, 0.577, 15.028),
253 epsilon = 0.001
254 );
255 assert_relative_eq!(
256 Mat3::from_cols(
257 eigen.eigenvectors.x_axis.abs(),
258 eigen.eigenvectors.y_axis.abs(),
259 eigen.eigenvectors.z_axis.abs()
260 ),
261 Mat3::from_cols(
262 Vec3::new(-1.075, 0.333, 1.0).normalize().abs(),
263 Vec3::new(0.542, -1.253, 1.0).normalize().abs(),
264 Vec3::new(1.359, 1.386, 1.0).normalize().abs()
265 ),
266 epsilon = 0.001
267 );
268 }
269
270 #[test]
271 fn eigen_3x3_diagonal() {
272 let mat = SymmetricMat3::from_diagonal(Vec3::new(2.0, 5.0, 3.0));
273 let eigen = SymmetricEigen3::new(mat);
274
275 assert_eq!(eigen.eigenvalues, Vec3::new(2.0, 3.0, 5.0));
276 assert_eq!(
277 Mat3::from_cols(
278 eigen.eigenvectors.x_axis.normalize().abs(),
279 eigen.eigenvectors.y_axis.normalize().abs(),
280 eigen.eigenvectors.z_axis.normalize().abs()
281 ),
282 Mat3::from_cols_array_2d(&[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]])
283 );
284 }
285
286 #[test]
287 fn eigen_3x3_reconstruction() {
288 let mut rng = rand_chacha::ChaCha8Rng::from_seed(Default::default());
289
290 // Generate random symmetric matrices and verify that the eigen decomposition is correct.
291 for _ in 0..10_000 {
292 let eigenvalues = Vec3::new(
293 rng.random_range(0.1..100.0),
294 rng.random_range(0.1..100.0),
295 rng.random_range(0.1..100.0),
296 );
297 let eigenvectors = Mat3::from_cols(
298 Vec3::new(
299 rng.random_range(-1.0..1.0),
300 rng.random_range(-1.0..1.0),
301 rng.random_range(-1.0..1.0),
302 )
303 .normalize(),
304 Vec3::new(
305 rng.random_range(-1.0..1.0),
306 rng.random_range(-1.0..1.0),
307 rng.random_range(-1.0..1.0),
308 )
309 .normalize(),
310 Vec3::new(
311 rng.random_range(-1.0..1.0),
312 rng.random_range(-1.0..1.0),
313 rng.random_range(-1.0..1.0),
314 )
315 .normalize(),
316 );
317
318 // Construct the symmetric matrix from the eigenvalues and eigenvectors.
319 let mat1 = eigenvectors * Mat3::from_diagonal(eigenvalues) * eigenvectors.transpose();
320
321 // Compute the eigen decomposition of the constructed matrix.
322 let eigen = SymmetricEigen3::new(SymmetricMat3::from_mat3_unchecked(mat1));
323
324 // Reconstruct the matrix from the computed eigenvalues and eigenvectors.
325 let mat2 = eigen.eigenvectors
326 * Mat3::from_diagonal(eigen.eigenvalues)
327 * eigen.eigenvectors.transpose();
328
329 // The reconstructed matrix should be close to the original matrix.
330 // Note: The precision depends on how large the eigenvalues are.
331 // Larger eigenvalues can lead to larger absolute error.
332 assert_relative_eq!(mat1, mat2, epsilon = 1e-2);
333 }
334 }
335
336 #[test]
337 fn eigen_pathological() {
338 // The algorithm sometimes produces NaN eigenvalues and eigenvectors for matrices
339 // that are already nearly diagonal. There is a diagonality check that should avoid this.
340 let mat = SymmetricMat3 {
341 m00: 5.3333335,
342 m01: 3.4465857e-20,
343 m02: 0.0,
344 m11: 5.3333335,
345 m12: 0.0,
346 m22: 5.3333335,
347 };
348 let eigen = SymmetricEigen3::new(mat);
349 assert_relative_eq!(eigen.eigenvalues, Vec3::splat(5.3333335), epsilon = 1e-6);
350 assert_relative_eq!(
351 eigen.eigenvectors.x_axis.abs(),
352 Vec3::new(1.0, 0.0, 0.0),
353 epsilon = 1e-6
354 );
355 assert_relative_eq!(
356 eigen.eigenvectors.y_axis.abs(),
357 Vec3::new(0.0, 1.0, 0.0),
358 epsilon = 1e-6
359 );
360 assert_relative_eq!(
361 eigen.eigenvectors.z_axis.abs(),
362 Vec3::new(0.0, 0.0, 1.0),
363 epsilon = 1e-6
364 );
365 }
366}