half/
bfloat.rs

1#[cfg(all(feature = "serde", feature = "alloc"))]
2#[allow(unused_imports)]
3use alloc::string::ToString;
4#[cfg(feature = "bytemuck")]
5use bytemuck::{Pod, Zeroable};
6use core::{
7    cmp::Ordering,
8    iter::{Product, Sum},
9    num::FpCategory,
10    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11};
12#[cfg(not(target_arch = "spirv"))]
13use core::{
14    fmt::{
15        Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
16    },
17    num::ParseFloatError,
18    str::FromStr,
19};
20#[cfg(feature = "serde")]
21use serde::{Deserialize, Serialize};
22use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout};
23
24pub(crate) mod convert;
25
26/// A 16-bit floating point type implementing the [`bfloat16`] format.
27///
28/// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
29/// `binary32`, a.k.a [`f32`]. [`struct@bf16`] has approximately the same dynamic range as [`f32`] by
30/// having a lower precision than [`struct@f16`][crate::f16]. While [`struct@f16`][crate::f16] has a precision of
31/// 11 bits, [`struct@bf16`] has a precision of only 8 bits.
32///
33/// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
34#[allow(non_camel_case_types)]
35#[derive(Clone, Copy, Default)]
36#[repr(transparent)]
37#[cfg_attr(feature = "serde", derive(Serialize))]
38#[cfg_attr(
39    feature = "rkyv",
40    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
41)]
42#[cfg_attr(feature = "rkyv", rkyv(resolver = Bf16Resolver))]
43#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
44#[cfg_attr(kani, derive(kani::Arbitrary))]
45#[derive(FromBytes, Immutable, IntoBytes, KnownLayout)]
46pub struct bf16(u16);
47
48impl bf16 {
49    /// Constructs a [`struct@bf16`] value from the raw bits.
50    #[inline]
51    #[must_use]
52    pub const fn from_bits(bits: u16) -> bf16 {
53        bf16(bits)
54    }
55
56    /// Constructs a [`struct@bf16`] value from a 32-bit floating point value.
57    ///
58    /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values
59    /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All
60    /// other values are truncated and rounded to the nearest representable value.
61    #[inline]
62    #[must_use]
63    pub fn from_f32(value: f32) -> bf16 {
64        Self::from_f32_const(value)
65    }
66
67    /// Constructs a [`struct@bf16`] value from a 32-bit floating point value.
68    ///
69    /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
70    /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
71    /// in any non-`const` context.
72    ///
73    /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values
74    /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All
75    /// other values are truncated and rounded to the nearest representable value.
76    #[inline]
77    #[must_use]
78    pub const fn from_f32_const(value: f32) -> bf16 {
79        bf16(convert::f32_to_bf16(value))
80    }
81
82    /// Constructs a [`struct@bf16`] value from a 64-bit floating point value.
83    ///
84    /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values
85    /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0.
86    /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other
87    /// values are truncated and rounded to the nearest representable value.
88    #[inline]
89    #[must_use]
90    pub fn from_f64(value: f64) -> bf16 {
91        Self::from_f64_const(value)
92    }
93
94    /// Constructs a [`struct@bf16`] value from a 64-bit floating point value.
95    ///
96    /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
97    /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
98    /// in any non-`const` context.
99    ///
100    /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values
101    /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0.
102    /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other
103    /// values are truncated and rounded to the nearest representable value.
104    #[inline]
105    #[must_use]
106    pub const fn from_f64_const(value: f64) -> bf16 {
107        bf16(convert::f64_to_bf16(value))
108    }
109
110    /// Converts a [`struct@bf16`] into the underlying bit representation.
111    #[inline]
112    #[must_use]
113    pub const fn to_bits(self) -> u16 {
114        self.0
115    }
116
117    /// Returns the memory representation of the underlying bit representation as a byte array in
118    /// little-endian byte order.
119    ///
120    /// # Examples
121    ///
122    /// ```rust
123    /// # use half::prelude::*;
124    /// let bytes = bf16::from_f32(12.5).to_le_bytes();
125    /// assert_eq!(bytes, [0x48, 0x41]);
126    /// ```
127    #[inline]
128    #[must_use]
129    pub const fn to_le_bytes(self) -> [u8; 2] {
130        self.0.to_le_bytes()
131    }
132
133    /// Returns the memory representation of the underlying bit representation as a byte array in
134    /// big-endian (network) byte order.
135    ///
136    /// # Examples
137    ///
138    /// ```rust
139    /// # use half::prelude::*;
140    /// let bytes = bf16::from_f32(12.5).to_be_bytes();
141    /// assert_eq!(bytes, [0x41, 0x48]);
142    /// ```
143    #[inline]
144    #[must_use]
145    pub const fn to_be_bytes(self) -> [u8; 2] {
146        self.0.to_be_bytes()
147    }
148
149    /// Returns the memory representation of the underlying bit representation as a byte array in
150    /// native byte order.
151    ///
152    /// As the target platform's native endianness is used, portable code should use
153    /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
154    /// instead.
155    ///
156    /// # Examples
157    ///
158    /// ```rust
159    /// # use half::prelude::*;
160    /// let bytes = bf16::from_f32(12.5).to_ne_bytes();
161    /// assert_eq!(bytes, if cfg!(target_endian = "big") {
162    ///     [0x41, 0x48]
163    /// } else {
164    ///     [0x48, 0x41]
165    /// });
166    /// ```
167    #[inline]
168    #[must_use]
169    pub const fn to_ne_bytes(self) -> [u8; 2] {
170        self.0.to_ne_bytes()
171    }
172
173    /// Creates a floating point value from its representation as a byte array in little endian.
174    ///
175    /// # Examples
176    ///
177    /// ```rust
178    /// # use half::prelude::*;
179    /// let value = bf16::from_le_bytes([0x48, 0x41]);
180    /// assert_eq!(value, bf16::from_f32(12.5));
181    /// ```
182    #[inline]
183    #[must_use]
184    pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
185        bf16::from_bits(u16::from_le_bytes(bytes))
186    }
187
188    /// Creates a floating point value from its representation as a byte array in big endian.
189    ///
190    /// # Examples
191    ///
192    /// ```rust
193    /// # use half::prelude::*;
194    /// let value = bf16::from_be_bytes([0x41, 0x48]);
195    /// assert_eq!(value, bf16::from_f32(12.5));
196    /// ```
197    #[inline]
198    #[must_use]
199    pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
200        bf16::from_bits(u16::from_be_bytes(bytes))
201    }
202
203    /// Creates a floating point value from its representation as a byte array in native endian.
204    ///
205    /// As the target platform's native endianness is used, portable code likely wants to use
206    /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
207    /// appropriate instead.
208    ///
209    /// # Examples
210    ///
211    /// ```rust
212    /// # use half::prelude::*;
213    /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
214    ///     [0x41, 0x48]
215    /// } else {
216    ///     [0x48, 0x41]
217    /// });
218    /// assert_eq!(value, bf16::from_f32(12.5));
219    /// ```
220    #[inline]
221    #[must_use]
222    pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
223        bf16::from_bits(u16::from_ne_bytes(bytes))
224    }
225
226    /// Converts a [`struct@bf16`] value into an [`f32`] value.
227    ///
228    /// This conversion is lossless as all values can be represented exactly in [`f32`].
229    #[inline]
230    #[must_use]
231    pub fn to_f32(self) -> f32 {
232        self.to_f32_const()
233    }
234
235    /// Converts a [`struct@bf16`] value into an [`f32`] value.
236    ///
237    /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
238    /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
239    /// in any non-`const` context.
240    ///
241    /// This conversion is lossless as all values can be represented exactly in [`f32`].
242    #[inline]
243    #[must_use]
244    pub const fn to_f32_const(self) -> f32 {
245        convert::bf16_to_f32(self.0)
246    }
247
248    /// Converts a [`struct@bf16`] value into an [`f64`] value.
249    ///
250    /// This conversion is lossless as all values can be represented exactly in [`f64`].
251    #[inline]
252    #[must_use]
253    pub fn to_f64(self) -> f64 {
254        self.to_f64_const()
255    }
256
257    /// Converts a [`struct@bf16`] value into an [`f64`] value.
258    ///
259    /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
260    /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
261    /// in any non-`const` context.
262    ///
263    /// This conversion is lossless as all values can be represented exactly in [`f64`].
264    #[inline]
265    #[must_use]
266    pub const fn to_f64_const(self) -> f64 {
267        convert::bf16_to_f64(self.0)
268    }
269
270    /// Returns `true` if this value is NaN and `false` otherwise.
271    ///
272    /// # Examples
273    ///
274    /// ```rust
275    /// # use half::prelude::*;
276    ///
277    /// let nan = bf16::NAN;
278    /// let f = bf16::from_f32(7.0_f32);
279    ///
280    /// assert!(nan.is_nan());
281    /// assert!(!f.is_nan());
282    /// ```
283    #[inline]
284    #[must_use]
285    pub const fn is_nan(self) -> bool {
286        self.0 & 0x7FFFu16 > 0x7F80u16
287    }
288
289    /// Returns `true` if this value is ±∞ and `false` otherwise.
290    ///
291    /// # Examples
292    ///
293    /// ```rust
294    /// # use half::prelude::*;
295    ///
296    /// let f = bf16::from_f32(7.0f32);
297    /// let inf = bf16::INFINITY;
298    /// let neg_inf = bf16::NEG_INFINITY;
299    /// let nan = bf16::NAN;
300    ///
301    /// assert!(!f.is_infinite());
302    /// assert!(!nan.is_infinite());
303    ///
304    /// assert!(inf.is_infinite());
305    /// assert!(neg_inf.is_infinite());
306    /// ```
307    #[inline]
308    #[must_use]
309    pub const fn is_infinite(self) -> bool {
310        self.0 & 0x7FFFu16 == 0x7F80u16
311    }
312
313    /// Returns `true` if this number is neither infinite nor NaN.
314    ///
315    /// # Examples
316    ///
317    /// ```rust
318    /// # use half::prelude::*;
319    ///
320    /// let f = bf16::from_f32(7.0f32);
321    /// let inf = bf16::INFINITY;
322    /// let neg_inf = bf16::NEG_INFINITY;
323    /// let nan = bf16::NAN;
324    ///
325    /// assert!(f.is_finite());
326    ///
327    /// assert!(!nan.is_finite());
328    /// assert!(!inf.is_finite());
329    /// assert!(!neg_inf.is_finite());
330    /// ```
331    #[inline]
332    #[must_use]
333    pub const fn is_finite(self) -> bool {
334        self.0 & 0x7F80u16 != 0x7F80u16
335    }
336
337    /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
338    ///
339    /// # Examples
340    ///
341    /// ```rust
342    /// # use half::prelude::*;
343    ///
344    /// let min = bf16::MIN_POSITIVE;
345    /// let max = bf16::MAX;
346    /// let lower_than_min = bf16::from_f32(1.0e-39_f32);
347    /// let zero = bf16::from_f32(0.0_f32);
348    ///
349    /// assert!(min.is_normal());
350    /// assert!(max.is_normal());
351    ///
352    /// assert!(!zero.is_normal());
353    /// assert!(!bf16::NAN.is_normal());
354    /// assert!(!bf16::INFINITY.is_normal());
355    /// // Values between 0 and `min` are subnormal.
356    /// assert!(!lower_than_min.is_normal());
357    /// ```
358    #[inline]
359    #[must_use]
360    pub const fn is_normal(self) -> bool {
361        let exp = self.0 & 0x7F80u16;
362        exp != 0x7F80u16 && exp != 0
363    }
364
365    /// Returns the floating point category of the number.
366    ///
367    /// If only one property is going to be tested, it is generally faster to use the specific
368    /// predicate instead.
369    ///
370    /// # Examples
371    ///
372    /// ```rust
373    /// use std::num::FpCategory;
374    /// # use half::prelude::*;
375    ///
376    /// let num = bf16::from_f32(12.4_f32);
377    /// let inf = bf16::INFINITY;
378    ///
379    /// assert_eq!(num.classify(), FpCategory::Normal);
380    /// assert_eq!(inf.classify(), FpCategory::Infinite);
381    /// ```
382    #[must_use]
383    pub const fn classify(self) -> FpCategory {
384        let exp = self.0 & 0x7F80u16;
385        let man = self.0 & 0x007Fu16;
386        match (exp, man) {
387            (0, 0) => FpCategory::Zero,
388            (0, _) => FpCategory::Subnormal,
389            (0x7F80u16, 0) => FpCategory::Infinite,
390            (0x7F80u16, _) => FpCategory::Nan,
391            _ => FpCategory::Normal,
392        }
393    }
394
395    /// Returns a number that represents the sign of `self`.
396    ///
397    /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
398    /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
399    /// * [`NAN`][bf16::NAN] if the number is NaN
400    ///
401    /// # Examples
402    ///
403    /// ```rust
404    /// # use half::prelude::*;
405    ///
406    /// let f = bf16::from_f32(3.5_f32);
407    ///
408    /// assert_eq!(f.signum(), bf16::from_f32(1.0));
409    /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
410    ///
411    /// assert!(bf16::NAN.signum().is_nan());
412    /// ```
413    #[must_use]
414    pub const fn signum(self) -> bf16 {
415        if self.is_nan() {
416            self
417        } else if self.0 & 0x8000u16 != 0 {
418            Self::NEG_ONE
419        } else {
420            Self::ONE
421        }
422    }
423
424    /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
425    /// positive sign bit and +∞.
426    ///
427    /// # Examples
428    ///
429    /// ```rust
430    /// # use half::prelude::*;
431    ///
432    /// let nan = bf16::NAN;
433    /// let f = bf16::from_f32(7.0_f32);
434    /// let g = bf16::from_f32(-7.0_f32);
435    ///
436    /// assert!(f.is_sign_positive());
437    /// assert!(!g.is_sign_positive());
438    /// // NaN can be either positive or negative
439    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
440    /// ```
441    #[inline]
442    #[must_use]
443    pub const fn is_sign_positive(self) -> bool {
444        self.0 & 0x8000u16 == 0
445    }
446
447    /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a
448    /// negative sign bit and −∞.
449    ///
450    /// # Examples
451    ///
452    /// ```rust
453    /// # use half::prelude::*;
454    ///
455    /// let nan = bf16::NAN;
456    /// let f = bf16::from_f32(7.0f32);
457    /// let g = bf16::from_f32(-7.0f32);
458    ///
459    /// assert!(!f.is_sign_negative());
460    /// assert!(g.is_sign_negative());
461    /// // NaN can be either positive or negative
462    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
463    /// ```
464    #[inline]
465    #[must_use]
466    pub const fn is_sign_negative(self) -> bool {
467        self.0 & 0x8000u16 != 0
468    }
469
470    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
471    ///
472    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
473    /// If `self` is NaN, then NaN with the sign of `sign` is returned.
474    ///
475    /// # Examples
476    ///
477    /// ```
478    /// # use half::prelude::*;
479    /// let f = bf16::from_f32(3.5);
480    ///
481    /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
482    /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
483    /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
484    /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
485    ///
486    /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
487    /// ```
488    #[inline]
489    #[must_use]
490    pub const fn copysign(self, sign: bf16) -> bf16 {
491        bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
492    }
493
494    /// Returns the maximum of the two numbers.
495    ///
496    /// If one of the arguments is NaN, then the other argument is returned.
497    ///
498    /// # Examples
499    ///
500    /// ```
501    /// # use half::prelude::*;
502    /// let x = bf16::from_f32(1.0);
503    /// let y = bf16::from_f32(2.0);
504    ///
505    /// assert_eq!(x.max(y), y);
506    /// ```
507    #[inline]
508    #[must_use]
509    pub fn max(self, other: bf16) -> bf16 {
510        if self.is_nan() || other > self {
511            other
512        } else {
513            self
514        }
515    }
516
517    /// Returns the minimum of the two numbers.
518    ///
519    /// If one of the arguments is NaN, then the other argument is returned.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// # use half::prelude::*;
525    /// let x = bf16::from_f32(1.0);
526    /// let y = bf16::from_f32(2.0);
527    ///
528    /// assert_eq!(x.min(y), x);
529    /// ```
530    #[inline]
531    #[must_use]
532    pub fn min(self, other: bf16) -> bf16 {
533        if self.is_nan() || other < self {
534            other
535        } else {
536            self
537        }
538    }
539
540    /// Restrict a value to a certain interval unless it is NaN.
541    ///
542    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
543    /// Otherwise this returns `self`.
544    ///
545    /// Note that this function returns NaN if the initial value was NaN as well.
546    ///
547    /// # Panics
548    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
549    ///
550    /// # Examples
551    ///
552    /// ```
553    /// # use half::prelude::*;
554    /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
555    /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
556    /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
557    /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
558    /// ```
559    #[inline]
560    #[must_use]
561    pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
562        assert!(min <= max);
563        let mut x = self;
564        if x < min {
565            x = min;
566        }
567        if x > max {
568            x = max;
569        }
570        x
571    }
572
573    /// Returns the ordering between `self` and `other`.
574    ///
575    /// Unlike the standard partial comparison between floating point numbers,
576    /// this comparison always produces an ordering in accordance to
577    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
578    /// floating point standard. The values are ordered in the following sequence:
579    ///
580    /// - negative quiet NaN
581    /// - negative signaling NaN
582    /// - negative infinity
583    /// - negative numbers
584    /// - negative subnormal numbers
585    /// - negative zero
586    /// - positive zero
587    /// - positive subnormal numbers
588    /// - positive numbers
589    /// - positive infinity
590    /// - positive signaling NaN
591    /// - positive quiet NaN.
592    ///
593    /// The ordering established by this function does not always agree with the
594    /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example,
595    /// they consider negative and positive zero equal, while `total_cmp`
596    /// doesn't.
597    ///
598    /// The interpretation of the signaling NaN bit follows the definition in
599    /// the IEEE 754 standard, which may not match the interpretation by some of
600    /// the older, non-conformant (e.g. MIPS) hardware implementations.
601    ///
602    /// # Examples
603    /// ```
604    /// # use half::bf16;
605    /// let mut v: Vec<bf16> = vec![];
606    /// v.push(bf16::ONE);
607    /// v.push(bf16::INFINITY);
608    /// v.push(bf16::NEG_INFINITY);
609    /// v.push(bf16::NAN);
610    /// v.push(bf16::MAX_SUBNORMAL);
611    /// v.push(-bf16::MAX_SUBNORMAL);
612    /// v.push(bf16::ZERO);
613    /// v.push(bf16::NEG_ZERO);
614    /// v.push(bf16::NEG_ONE);
615    /// v.push(bf16::MIN_POSITIVE);
616    ///
617    /// v.sort_by(|a, b| a.total_cmp(&b));
618    ///
619    /// assert!(v
620    ///     .into_iter()
621    ///     .zip(
622    ///         [
623    ///             bf16::NEG_INFINITY,
624    ///             bf16::NEG_ONE,
625    ///             -bf16::MAX_SUBNORMAL,
626    ///             bf16::NEG_ZERO,
627    ///             bf16::ZERO,
628    ///             bf16::MAX_SUBNORMAL,
629    ///             bf16::MIN_POSITIVE,
630    ///             bf16::ONE,
631    ///             bf16::INFINITY,
632    ///             bf16::NAN
633    ///         ]
634    ///         .iter()
635    ///     )
636    ///     .all(|(a, b)| a.to_bits() == b.to_bits()));
637    /// ```
638    // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
639    #[inline]
640    #[must_use]
641    pub fn total_cmp(&self, other: &Self) -> Ordering {
642        let mut left = self.to_bits() as i16;
643        let mut right = other.to_bits() as i16;
644        left ^= (((left >> 15) as u16) >> 1) as i16;
645        right ^= (((right >> 15) as u16) >> 1) as i16;
646        left.cmp(&right)
647    }
648
649    /// Alternate serialize adapter for serializing as a float.
650    ///
651    /// By default, [`struct@bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
652    /// implementation that serializes as an [`f32`] value. It is designed for use with
653    /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
654    /// the default deserialize implementation.
655    ///
656    /// # Examples
657    ///
658    /// A demonstration on how to use this adapater:
659    ///
660    /// ```
661    /// use serde::{Serialize, Deserialize};
662    /// use half::bf16;
663    ///
664    /// #[derive(Serialize, Deserialize)]
665    /// struct MyStruct {
666    ///     #[serde(serialize_with = "bf16::serialize_as_f32")]
667    ///     value: bf16 // Will be serialized as f32 instead of u16
668    /// }
669    /// ```
670    #[cfg(feature = "serde")]
671    pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
672        serializer.serialize_f32(self.to_f32())
673    }
674
675    /// Alternate serialize adapter for serializing as a string.
676    ///
677    /// By default, [`struct@bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
678    /// implementation that serializes as a string value. It is designed for use with
679    /// `serialize_with` serde attributes. Deserialization from string values is already supported
680    /// by the default deserialize implementation.
681    ///
682    /// # Examples
683    ///
684    /// A demonstration on how to use this adapater:
685    ///
686    /// ```
687    /// use serde::{Serialize, Deserialize};
688    /// use half::bf16;
689    ///
690    /// #[derive(Serialize, Deserialize)]
691    /// struct MyStruct {
692    ///     #[serde(serialize_with = "bf16::serialize_as_string")]
693    ///     value: bf16 // Will be serialized as a string instead of u16
694    /// }
695    /// ```
696    #[cfg(all(feature = "serde", feature = "alloc"))]
697    pub fn serialize_as_string<S: serde::Serializer>(
698        &self,
699        serializer: S,
700    ) -> Result<S::Ok, S::Error> {
701        serializer.serialize_str(&self.to_string())
702    }
703
704    /// Approximate number of [`struct@bf16`] significant digits in base 10
705    pub const DIGITS: u32 = 2;
706    /// [`struct@bf16`]
707    /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
708    ///
709    /// This is the difference between 1.0 and the next largest representable number.
710    pub const EPSILON: bf16 = bf16(0x3C00u16);
711    /// [`struct@bf16`] positive Infinity (+∞)
712    pub const INFINITY: bf16 = bf16(0x7F80u16);
713    /// Number of [`struct@bf16`] significant digits in base 2
714    pub const MANTISSA_DIGITS: u32 = 8;
715    /// Largest finite [`struct@bf16`] value
716    pub const MAX: bf16 = bf16(0x7F7F);
717    /// Maximum possible [`struct@bf16`] power of 10 exponent
718    pub const MAX_10_EXP: i32 = 38;
719    /// Maximum possible [`struct@bf16`] power of 2 exponent
720    pub const MAX_EXP: i32 = 128;
721    /// Smallest finite [`struct@bf16`] value
722    pub const MIN: bf16 = bf16(0xFF7F);
723    /// Minimum possible normal [`struct@bf16`] power of 10 exponent
724    pub const MIN_10_EXP: i32 = -37;
725    /// One greater than the minimum possible normal [`struct@bf16`] power of 2 exponent
726    pub const MIN_EXP: i32 = -125;
727    /// Smallest positive normal [`struct@bf16`] value
728    pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
729    /// [`struct@bf16`] Not a Number (NaN)
730    pub const NAN: bf16 = bf16(0x7FC0u16);
731    /// [`struct@bf16`] negative infinity (-∞).
732    pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
733    /// The radix or base of the internal representation of [`struct@bf16`]
734    pub const RADIX: u32 = 2;
735
736    /// Minimum positive subnormal [`struct@bf16`] value
737    pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
738    /// Maximum subnormal [`struct@bf16`] value
739    pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
740
741    /// [`struct@bf16`] 1
742    pub const ONE: bf16 = bf16(0x3F80u16);
743    /// [`struct@bf16`] 0
744    pub const ZERO: bf16 = bf16(0x0000u16);
745    /// [`struct@bf16`] -0
746    pub const NEG_ZERO: bf16 = bf16(0x8000u16);
747    /// [`struct@bf16`] -1
748    pub const NEG_ONE: bf16 = bf16(0xBF80u16);
749
750    /// [`struct@bf16`] Euler's number (ℯ)
751    pub const E: bf16 = bf16(0x402Eu16);
752    /// [`struct@bf16`] Archimedes' constant (π)
753    pub const PI: bf16 = bf16(0x4049u16);
754    /// [`struct@bf16`] 1/π
755    pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
756    /// [`struct@bf16`] 1/√2
757    pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
758    /// [`struct@bf16`] 2/π
759    pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
760    /// [`struct@bf16`] 2/√π
761    pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
762    /// [`struct@bf16`] π/2
763    pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
764    /// [`struct@bf16`] π/3
765    pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
766    /// [`struct@bf16`] π/4
767    pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
768    /// [`struct@bf16`] π/6
769    pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
770    /// [`struct@bf16`] π/8
771    pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
772    /// [`struct@bf16`] 𝗅𝗇 10
773    pub const LN_10: bf16 = bf16(0x4013u16);
774    /// [`struct@bf16`] 𝗅𝗇 2
775    pub const LN_2: bf16 = bf16(0x3F31u16);
776    /// [`struct@bf16`] 𝗅𝗈𝗀₁₀ℯ
777    pub const LOG10_E: bf16 = bf16(0x3EDEu16);
778    /// [`struct@bf16`] 𝗅𝗈𝗀₁₀2
779    pub const LOG10_2: bf16 = bf16(0x3E9Au16);
780    /// [`struct@bf16`] 𝗅𝗈𝗀₂ℯ
781    pub const LOG2_E: bf16 = bf16(0x3FB9u16);
782    /// [`struct@bf16`] 𝗅𝗈𝗀₂10
783    pub const LOG2_10: bf16 = bf16(0x4055u16);
784    /// [`struct@bf16`] √2
785    pub const SQRT_2: bf16 = bf16(0x3FB5u16);
786}
787
788impl From<bf16> for f32 {
789    #[inline]
790    fn from(x: bf16) -> f32 {
791        x.to_f32()
792    }
793}
794
795impl From<bf16> for f64 {
796    #[inline]
797    fn from(x: bf16) -> f64 {
798        x.to_f64()
799    }
800}
801
802impl From<i8> for bf16 {
803    #[inline]
804    fn from(x: i8) -> bf16 {
805        // Convert to f32, then to bf16
806        bf16::from_f32(f32::from(x))
807    }
808}
809
810impl From<u8> for bf16 {
811    #[inline]
812    fn from(x: u8) -> bf16 {
813        // Convert to f32, then to f16
814        bf16::from_f32(f32::from(x))
815    }
816}
817
818impl PartialEq for bf16 {
819    fn eq(&self, other: &bf16) -> bool {
820        if self.is_nan() || other.is_nan() {
821            false
822        } else {
823            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
824        }
825    }
826}
827
828impl PartialOrd for bf16 {
829    fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
830        if self.is_nan() || other.is_nan() {
831            None
832        } else {
833            let neg = self.0 & 0x8000u16 != 0;
834            let other_neg = other.0 & 0x8000u16 != 0;
835            match (neg, other_neg) {
836                (false, false) => Some(self.0.cmp(&other.0)),
837                (false, true) => {
838                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
839                        Some(Ordering::Equal)
840                    } else {
841                        Some(Ordering::Greater)
842                    }
843                }
844                (true, false) => {
845                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
846                        Some(Ordering::Equal)
847                    } else {
848                        Some(Ordering::Less)
849                    }
850                }
851                (true, true) => Some(other.0.cmp(&self.0)),
852            }
853        }
854    }
855
856    fn lt(&self, other: &bf16) -> bool {
857        if self.is_nan() || other.is_nan() {
858            false
859        } else {
860            let neg = self.0 & 0x8000u16 != 0;
861            let other_neg = other.0 & 0x8000u16 != 0;
862            match (neg, other_neg) {
863                (false, false) => self.0 < other.0,
864                (false, true) => false,
865                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
866                (true, true) => self.0 > other.0,
867            }
868        }
869    }
870
871    fn le(&self, other: &bf16) -> bool {
872        if self.is_nan() || other.is_nan() {
873            false
874        } else {
875            let neg = self.0 & 0x8000u16 != 0;
876            let other_neg = other.0 & 0x8000u16 != 0;
877            match (neg, other_neg) {
878                (false, false) => self.0 <= other.0,
879                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
880                (true, false) => true,
881                (true, true) => self.0 >= other.0,
882            }
883        }
884    }
885
886    fn gt(&self, other: &bf16) -> bool {
887        if self.is_nan() || other.is_nan() {
888            false
889        } else {
890            let neg = self.0 & 0x8000u16 != 0;
891            let other_neg = other.0 & 0x8000u16 != 0;
892            match (neg, other_neg) {
893                (false, false) => self.0 > other.0,
894                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
895                (true, false) => false,
896                (true, true) => self.0 < other.0,
897            }
898        }
899    }
900
901    fn ge(&self, other: &bf16) -> bool {
902        if self.is_nan() || other.is_nan() {
903            false
904        } else {
905            let neg = self.0 & 0x8000u16 != 0;
906            let other_neg = other.0 & 0x8000u16 != 0;
907            match (neg, other_neg) {
908                (false, false) => self.0 >= other.0,
909                (false, true) => true,
910                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
911                (true, true) => self.0 <= other.0,
912            }
913        }
914    }
915}
916
917#[cfg(not(target_arch = "spirv"))]
918impl FromStr for bf16 {
919    type Err = ParseFloatError;
920    fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
921        f32::from_str(src).map(bf16::from_f32)
922    }
923}
924
925#[cfg(not(target_arch = "spirv"))]
926impl Debug for bf16 {
927    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
928        Debug::fmt(&self.to_f32(), f)
929    }
930}
931
932#[cfg(not(target_arch = "spirv"))]
933impl Display for bf16 {
934    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
935        Display::fmt(&self.to_f32(), f)
936    }
937}
938
939#[cfg(not(target_arch = "spirv"))]
940impl LowerExp for bf16 {
941    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
942        write!(f, "{:e}", self.to_f32())
943    }
944}
945
946#[cfg(not(target_arch = "spirv"))]
947impl UpperExp for bf16 {
948    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
949        write!(f, "{:E}", self.to_f32())
950    }
951}
952
953#[cfg(not(target_arch = "spirv"))]
954impl Binary for bf16 {
955    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
956        write!(f, "{:b}", self.0)
957    }
958}
959
960#[cfg(not(target_arch = "spirv"))]
961impl Octal for bf16 {
962    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
963        write!(f, "{:o}", self.0)
964    }
965}
966
967#[cfg(not(target_arch = "spirv"))]
968impl LowerHex for bf16 {
969    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
970        write!(f, "{:x}", self.0)
971    }
972}
973
974#[cfg(not(target_arch = "spirv"))]
975impl UpperHex for bf16 {
976    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
977        write!(f, "{:X}", self.0)
978    }
979}
980
981impl Neg for bf16 {
982    type Output = Self;
983
984    fn neg(self) -> Self::Output {
985        Self(self.0 ^ 0x8000)
986    }
987}
988
989impl Neg for &bf16 {
990    type Output = <bf16 as Neg>::Output;
991
992    #[inline]
993    fn neg(self) -> Self::Output {
994        Neg::neg(*self)
995    }
996}
997
998impl Add for bf16 {
999    type Output = Self;
1000
1001    fn add(self, rhs: Self) -> Self::Output {
1002        Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
1003    }
1004}
1005
1006impl Add<&bf16> for bf16 {
1007    type Output = <bf16 as Add<bf16>>::Output;
1008
1009    #[inline]
1010    fn add(self, rhs: &bf16) -> Self::Output {
1011        self.add(*rhs)
1012    }
1013}
1014
1015impl Add<&bf16> for &bf16 {
1016    type Output = <bf16 as Add<bf16>>::Output;
1017
1018    #[inline]
1019    fn add(self, rhs: &bf16) -> Self::Output {
1020        (*self).add(*rhs)
1021    }
1022}
1023
1024impl Add<bf16> for &bf16 {
1025    type Output = <bf16 as Add<bf16>>::Output;
1026
1027    #[inline]
1028    fn add(self, rhs: bf16) -> Self::Output {
1029        (*self).add(rhs)
1030    }
1031}
1032
1033impl AddAssign for bf16 {
1034    #[inline]
1035    fn add_assign(&mut self, rhs: Self) {
1036        *self = (*self).add(rhs);
1037    }
1038}
1039
1040impl AddAssign<&bf16> for bf16 {
1041    #[inline]
1042    fn add_assign(&mut self, rhs: &bf16) {
1043        *self = (*self).add(rhs);
1044    }
1045}
1046
1047impl Sub for bf16 {
1048    type Output = Self;
1049
1050    fn sub(self, rhs: Self) -> Self::Output {
1051        Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
1052    }
1053}
1054
1055impl Sub<&bf16> for bf16 {
1056    type Output = <bf16 as Sub<bf16>>::Output;
1057
1058    #[inline]
1059    fn sub(self, rhs: &bf16) -> Self::Output {
1060        self.sub(*rhs)
1061    }
1062}
1063
1064impl Sub<&bf16> for &bf16 {
1065    type Output = <bf16 as Sub<bf16>>::Output;
1066
1067    #[inline]
1068    fn sub(self, rhs: &bf16) -> Self::Output {
1069        (*self).sub(*rhs)
1070    }
1071}
1072
1073impl Sub<bf16> for &bf16 {
1074    type Output = <bf16 as Sub<bf16>>::Output;
1075
1076    #[inline]
1077    fn sub(self, rhs: bf16) -> Self::Output {
1078        (*self).sub(rhs)
1079    }
1080}
1081
1082impl SubAssign for bf16 {
1083    #[inline]
1084    fn sub_assign(&mut self, rhs: Self) {
1085        *self = (*self).sub(rhs);
1086    }
1087}
1088
1089impl SubAssign<&bf16> for bf16 {
1090    #[inline]
1091    fn sub_assign(&mut self, rhs: &bf16) {
1092        *self = (*self).sub(rhs);
1093    }
1094}
1095
1096impl Mul for bf16 {
1097    type Output = Self;
1098
1099    fn mul(self, rhs: Self) -> Self::Output {
1100        Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
1101    }
1102}
1103
1104impl Mul<&bf16> for bf16 {
1105    type Output = <bf16 as Mul<bf16>>::Output;
1106
1107    #[inline]
1108    fn mul(self, rhs: &bf16) -> Self::Output {
1109        self.mul(*rhs)
1110    }
1111}
1112
1113impl Mul<&bf16> for &bf16 {
1114    type Output = <bf16 as Mul<bf16>>::Output;
1115
1116    #[inline]
1117    fn mul(self, rhs: &bf16) -> Self::Output {
1118        (*self).mul(*rhs)
1119    }
1120}
1121
1122impl Mul<bf16> for &bf16 {
1123    type Output = <bf16 as Mul<bf16>>::Output;
1124
1125    #[inline]
1126    fn mul(self, rhs: bf16) -> Self::Output {
1127        (*self).mul(rhs)
1128    }
1129}
1130
1131impl MulAssign for bf16 {
1132    #[inline]
1133    fn mul_assign(&mut self, rhs: Self) {
1134        *self = (*self).mul(rhs);
1135    }
1136}
1137
1138impl MulAssign<&bf16> for bf16 {
1139    #[inline]
1140    fn mul_assign(&mut self, rhs: &bf16) {
1141        *self = (*self).mul(rhs);
1142    }
1143}
1144
1145impl Div for bf16 {
1146    type Output = Self;
1147
1148    fn div(self, rhs: Self) -> Self::Output {
1149        Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
1150    }
1151}
1152
1153impl Div<&bf16> for bf16 {
1154    type Output = <bf16 as Div<bf16>>::Output;
1155
1156    #[inline]
1157    fn div(self, rhs: &bf16) -> Self::Output {
1158        self.div(*rhs)
1159    }
1160}
1161
1162impl Div<&bf16> for &bf16 {
1163    type Output = <bf16 as Div<bf16>>::Output;
1164
1165    #[inline]
1166    fn div(self, rhs: &bf16) -> Self::Output {
1167        (*self).div(*rhs)
1168    }
1169}
1170
1171impl Div<bf16> for &bf16 {
1172    type Output = <bf16 as Div<bf16>>::Output;
1173
1174    #[inline]
1175    fn div(self, rhs: bf16) -> Self::Output {
1176        (*self).div(rhs)
1177    }
1178}
1179
1180impl DivAssign for bf16 {
1181    #[inline]
1182    fn div_assign(&mut self, rhs: Self) {
1183        *self = (*self).div(rhs);
1184    }
1185}
1186
1187impl DivAssign<&bf16> for bf16 {
1188    #[inline]
1189    fn div_assign(&mut self, rhs: &bf16) {
1190        *self = (*self).div(rhs);
1191    }
1192}
1193
1194impl Rem for bf16 {
1195    type Output = Self;
1196
1197    fn rem(self, rhs: Self) -> Self::Output {
1198        Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
1199    }
1200}
1201
1202impl Rem<&bf16> for bf16 {
1203    type Output = <bf16 as Rem<bf16>>::Output;
1204
1205    #[inline]
1206    fn rem(self, rhs: &bf16) -> Self::Output {
1207        self.rem(*rhs)
1208    }
1209}
1210
1211impl Rem<&bf16> for &bf16 {
1212    type Output = <bf16 as Rem<bf16>>::Output;
1213
1214    #[inline]
1215    fn rem(self, rhs: &bf16) -> Self::Output {
1216        (*self).rem(*rhs)
1217    }
1218}
1219
1220impl Rem<bf16> for &bf16 {
1221    type Output = <bf16 as Rem<bf16>>::Output;
1222
1223    #[inline]
1224    fn rem(self, rhs: bf16) -> Self::Output {
1225        (*self).rem(rhs)
1226    }
1227}
1228
1229impl RemAssign for bf16 {
1230    #[inline]
1231    fn rem_assign(&mut self, rhs: Self) {
1232        *self = (*self).rem(rhs);
1233    }
1234}
1235
1236impl RemAssign<&bf16> for bf16 {
1237    #[inline]
1238    fn rem_assign(&mut self, rhs: &bf16) {
1239        *self = (*self).rem(rhs);
1240    }
1241}
1242
1243impl Product for bf16 {
1244    #[inline]
1245    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1246        bf16::from_f32(iter.map(|f| f.to_f32()).product())
1247    }
1248}
1249
1250impl<'a> Product<&'a bf16> for bf16 {
1251    #[inline]
1252    fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
1253        bf16::from_f32(iter.map(|f| f.to_f32()).product())
1254    }
1255}
1256
1257impl Sum for bf16 {
1258    #[inline]
1259    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1260        bf16::from_f32(iter.map(|f| f.to_f32()).sum())
1261    }
1262}
1263
1264impl<'a> Sum<&'a bf16> for bf16 {
1265    #[inline]
1266    fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
1267        bf16::from_f32(iter.map(|f| f.to_f32()).sum())
1268    }
1269}
1270
1271#[cfg(feature = "serde")]
1272struct Visitor;
1273
1274#[cfg(feature = "serde")]
1275impl<'de> Deserialize<'de> for bf16 {
1276    fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error>
1277    where
1278        D: serde::de::Deserializer<'de>,
1279    {
1280        deserializer.deserialize_newtype_struct("bf16", Visitor)
1281    }
1282}
1283
1284#[cfg(feature = "serde")]
1285impl<'de> serde::de::Visitor<'de> for Visitor {
1286    type Value = bf16;
1287
1288    fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
1289        write!(formatter, "tuple struct bf16")
1290    }
1291
1292    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1293    where
1294        D: serde::Deserializer<'de>,
1295    {
1296        Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?))
1297    }
1298
1299    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1300    where
1301        E: serde::de::Error,
1302    {
1303        v.parse().map_err(|_| {
1304            serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
1305        })
1306    }
1307
1308    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1309    where
1310        E: serde::de::Error,
1311    {
1312        Ok(bf16::from_f32(v))
1313    }
1314
1315    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1316    where
1317        E: serde::de::Error,
1318    {
1319        Ok(bf16::from_f64(v))
1320    }
1321}
1322
1323#[allow(
1324    clippy::cognitive_complexity,
1325    clippy::float_cmp,
1326    clippy::neg_cmp_op_on_partial_ord
1327)]
1328#[cfg(test)]
1329mod test {
1330    use super::*;
1331    #[allow(unused_imports)]
1332    use core::cmp::Ordering;
1333    #[cfg(feature = "num-traits")]
1334    use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
1335    use quickcheck_macros::quickcheck;
1336
1337    #[cfg(feature = "num-traits")]
1338    #[test]
1339    fn as_primitive() {
1340        let two = bf16::from_f32(2.0);
1341        assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
1342        assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
1343
1344        assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
1345        assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
1346
1347        assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
1348        assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
1349    }
1350
1351    #[cfg(feature = "num-traits")]
1352    #[test]
1353    fn to_primitive() {
1354        let two = bf16::from_f32(2.0);
1355        assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1356        assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1357        assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1358    }
1359
1360    #[cfg(feature = "num-traits")]
1361    #[test]
1362    fn from_primitive() {
1363        let two = bf16::from_f32(2.0);
1364        assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
1365        assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1366        assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1367    }
1368
1369    #[cfg(feature = "num-traits")]
1370    #[test]
1371    fn to_and_from_bytes() {
1372        let two = bf16::from_f32(2.0);
1373        assert_eq!(<bf16 as ToBytes>::to_le_bytes(&two), [0, 64]);
1374        assert_eq!(<bf16 as FromBytes>::from_le_bytes(&[0, 64]), two);
1375        assert_eq!(<bf16 as ToBytes>::to_be_bytes(&two), [64, 0]);
1376        assert_eq!(<bf16 as FromBytes>::from_be_bytes(&[64, 0]), two);
1377    }
1378
1379    #[test]
1380    fn test_bf16_consts_from_f32() {
1381        let one = bf16::from_f32(1.0);
1382        let zero = bf16::from_f32(0.0);
1383        let neg_zero = bf16::from_f32(-0.0);
1384        let neg_one = bf16::from_f32(-1.0);
1385        let inf = bf16::from_f32(core::f32::INFINITY);
1386        let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
1387        let nan = bf16::from_f32(core::f32::NAN);
1388
1389        assert_eq!(bf16::ONE, one);
1390        assert_eq!(bf16::ZERO, zero);
1391        assert!(zero.is_sign_positive());
1392        assert_eq!(bf16::NEG_ZERO, neg_zero);
1393        assert!(neg_zero.is_sign_negative());
1394        assert_eq!(bf16::NEG_ONE, neg_one);
1395        assert!(neg_one.is_sign_negative());
1396        assert_eq!(bf16::INFINITY, inf);
1397        assert_eq!(bf16::NEG_INFINITY, neg_inf);
1398        assert!(nan.is_nan());
1399        assert!(bf16::NAN.is_nan());
1400
1401        let e = bf16::from_f32(core::f32::consts::E);
1402        let pi = bf16::from_f32(core::f32::consts::PI);
1403        let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
1404        let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1405        let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
1406        let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1407        let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
1408        let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
1409        let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
1410        let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
1411        let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
1412        let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
1413        let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
1414        let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
1415        // core::f32::consts::LOG10_2 requires rustc 1.43.0
1416        let log10_2 = bf16::from_f32(2f32.log10());
1417        let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
1418        // core::f32::consts::LOG2_10 requires rustc 1.43.0
1419        let log2_10 = bf16::from_f32(10f32.log2());
1420        let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
1421
1422        assert_eq!(bf16::E, e);
1423        assert_eq!(bf16::PI, pi);
1424        assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
1425        assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1426        assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
1427        assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1428        assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
1429        assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
1430        assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
1431        assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
1432        assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
1433        assert_eq!(bf16::LN_10, ln_10);
1434        assert_eq!(bf16::LN_2, ln_2);
1435        assert_eq!(bf16::LOG10_E, log10_e);
1436        assert_eq!(bf16::LOG10_2, log10_2);
1437        assert_eq!(bf16::LOG2_E, log2_e);
1438        assert_eq!(bf16::LOG2_10, log2_10);
1439        assert_eq!(bf16::SQRT_2, sqrt_2);
1440    }
1441
1442    #[test]
1443    fn test_bf16_consts_from_f64() {
1444        let one = bf16::from_f64(1.0);
1445        let zero = bf16::from_f64(0.0);
1446        let neg_zero = bf16::from_f64(-0.0);
1447        let inf = bf16::from_f64(core::f64::INFINITY);
1448        let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
1449        let nan = bf16::from_f64(core::f64::NAN);
1450
1451        assert_eq!(bf16::ONE, one);
1452        assert_eq!(bf16::ZERO, zero);
1453        assert_eq!(bf16::NEG_ZERO, neg_zero);
1454        assert_eq!(bf16::INFINITY, inf);
1455        assert_eq!(bf16::NEG_INFINITY, neg_inf);
1456        assert!(nan.is_nan());
1457        assert!(bf16::NAN.is_nan());
1458
1459        let e = bf16::from_f64(core::f64::consts::E);
1460        let pi = bf16::from_f64(core::f64::consts::PI);
1461        let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
1462        let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1463        let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
1464        let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1465        let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
1466        let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
1467        let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
1468        let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
1469        let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
1470        let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
1471        let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
1472        let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
1473        // core::f64::consts::LOG10_2 requires rustc 1.43.0
1474        let log10_2 = bf16::from_f64(2f64.log10());
1475        let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
1476        // core::f64::consts::LOG2_10 requires rustc 1.43.0
1477        let log2_10 = bf16::from_f64(10f64.log2());
1478        let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
1479
1480        assert_eq!(bf16::E, e);
1481        assert_eq!(bf16::PI, pi);
1482        assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
1483        assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1484        assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
1485        assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1486        assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
1487        assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
1488        assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
1489        assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
1490        assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
1491        assert_eq!(bf16::LN_10, ln_10);
1492        assert_eq!(bf16::LN_2, ln_2);
1493        assert_eq!(bf16::LOG10_E, log10_e);
1494        assert_eq!(bf16::LOG10_2, log10_2);
1495        assert_eq!(bf16::LOG2_E, log2_e);
1496        assert_eq!(bf16::LOG2_10, log2_10);
1497        assert_eq!(bf16::SQRT_2, sqrt_2);
1498    }
1499
1500    #[test]
1501    fn test_nan_conversion_to_smaller() {
1502        let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1503        let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1504        let nan32 = f32::from_bits(0x7F80_0001u32);
1505        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1506        let nan32_from_64 = nan64 as f32;
1507        let neg_nan32_from_64 = neg_nan64 as f32;
1508        let nan16_from_64 = bf16::from_f64(nan64);
1509        let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
1510        let nan16_from_32 = bf16::from_f32(nan32);
1511        let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
1512
1513        assert!(nan64.is_nan() && nan64.is_sign_positive());
1514        assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1515        assert!(nan32.is_nan() && nan32.is_sign_positive());
1516        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1517
1518        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/VoidStarKat/half-rs/issues/103
1519        assert!(neg_nan32_from_64.is_nan());
1520        assert!(nan32_from_64.is_nan());
1521        assert!(nan16_from_64.is_nan());
1522        assert!(neg_nan16_from_64.is_nan());
1523        assert!(nan16_from_32.is_nan());
1524        assert!(neg_nan16_from_32.is_nan());
1525    }
1526
1527    #[test]
1528    fn test_nan_conversion_to_larger() {
1529        let nan16 = bf16::from_bits(0x7F81u16);
1530        let neg_nan16 = bf16::from_bits(0xFF81u16);
1531        let nan32 = f32::from_bits(0x7F80_0001u32);
1532        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1533        let nan32_from_16 = f32::from(nan16);
1534        let neg_nan32_from_16 = f32::from(neg_nan16);
1535        let nan64_from_16 = f64::from(nan16);
1536        let neg_nan64_from_16 = f64::from(neg_nan16);
1537        let nan64_from_32 = f64::from(nan32);
1538        let neg_nan64_from_32 = f64::from(neg_nan32);
1539
1540        assert!(nan16.is_nan() && nan16.is_sign_positive());
1541        assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1542        assert!(nan32.is_nan() && nan32.is_sign_positive());
1543        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1544
1545        // // f32/f64 NaN conversion sign is non-deterministic: https://github.com/VoidStarKat/half-rs/issues/103
1546        assert!(nan32_from_16.is_nan());
1547        assert!(neg_nan32_from_16.is_nan());
1548        assert!(nan64_from_16.is_nan());
1549        assert!(neg_nan64_from_16.is_nan());
1550        assert!(nan64_from_32.is_nan());
1551        assert!(neg_nan64_from_32.is_nan());
1552    }
1553
1554    #[test]
1555    fn test_bf16_to_f32() {
1556        let f = bf16::from_f32(7.0);
1557        assert_eq!(f.to_f32(), 7.0f32);
1558
1559        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1560        let f = bf16::from_f32(7.1);
1561        let diff = (f.to_f32() - 7.1f32).abs();
1562        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1563        assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
1564
1565        let tiny32 = f32::from_bits(0x0001_0000u32);
1566        assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
1567        assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
1568
1569        assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
1570        assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
1571    }
1572
1573    #[test]
1574    #[cfg_attr(miri, ignore)]
1575    fn test_bf16_to_f64() {
1576        let f = bf16::from_f64(7.0);
1577        assert_eq!(f.to_f64(), 7.0f64);
1578
1579        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1580        let f = bf16::from_f64(7.1);
1581        let diff = (f.to_f64() - 7.1f64).abs();
1582        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1583        assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
1584
1585        let tiny64 = 2.0f64.powi(-133);
1586        assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
1587        assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
1588
1589        assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
1590        assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
1591    }
1592
1593    #[test]
1594    fn test_comparisons() {
1595        let zero = bf16::from_f64(0.0);
1596        let one = bf16::from_f64(1.0);
1597        let neg_zero = bf16::from_f64(-0.0);
1598        let neg_one = bf16::from_f64(-1.0);
1599
1600        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1601        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1602        assert!(zero == neg_zero);
1603        assert!(neg_zero == zero);
1604        assert!(!(zero != neg_zero));
1605        assert!(!(neg_zero != zero));
1606        assert!(!(zero < neg_zero));
1607        assert!(!(neg_zero < zero));
1608        assert!(zero <= neg_zero);
1609        assert!(neg_zero <= zero);
1610        assert!(!(zero > neg_zero));
1611        assert!(!(neg_zero > zero));
1612        assert!(zero >= neg_zero);
1613        assert!(neg_zero >= zero);
1614
1615        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1616        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1617        assert!(!(one == neg_zero));
1618        assert!(!(neg_zero == one));
1619        assert!(one != neg_zero);
1620        assert!(neg_zero != one);
1621        assert!(!(one < neg_zero));
1622        assert!(neg_zero < one);
1623        assert!(!(one <= neg_zero));
1624        assert!(neg_zero <= one);
1625        assert!(one > neg_zero);
1626        assert!(!(neg_zero > one));
1627        assert!(one >= neg_zero);
1628        assert!(!(neg_zero >= one));
1629
1630        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1631        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1632        assert!(!(one == neg_one));
1633        assert!(!(neg_one == one));
1634        assert!(one != neg_one);
1635        assert!(neg_one != one);
1636        assert!(!(one < neg_one));
1637        assert!(neg_one < one);
1638        assert!(!(one <= neg_one));
1639        assert!(neg_one <= one);
1640        assert!(one > neg_one);
1641        assert!(!(neg_one > one));
1642        assert!(one >= neg_one);
1643        assert!(!(neg_one >= one));
1644    }
1645
1646    #[test]
1647    #[allow(clippy::erasing_op, clippy::identity_op)]
1648    #[cfg_attr(miri, ignore)]
1649    fn round_to_even_f32() {
1650        // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
1651        let min_sub = bf16::from_bits(1);
1652        let min_sub_f = (-133f32).exp2();
1653        assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1654        assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1655
1656        // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
1657        // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
1658        // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
1659        assert_eq!(
1660            bf16::from_f32(min_sub_f * 0.49).to_bits(),
1661            min_sub.to_bits() * 0
1662        );
1663        assert_eq!(
1664            bf16::from_f32(min_sub_f * 0.50).to_bits(),
1665            min_sub.to_bits() * 0
1666        );
1667        assert_eq!(
1668            bf16::from_f32(min_sub_f * 0.51).to_bits(),
1669            min_sub.to_bits() * 1
1670        );
1671
1672        // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
1673        // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
1674        // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
1675        assert_eq!(
1676            bf16::from_f32(min_sub_f * 1.49).to_bits(),
1677            min_sub.to_bits() * 1
1678        );
1679        assert_eq!(
1680            bf16::from_f32(min_sub_f * 1.50).to_bits(),
1681            min_sub.to_bits() * 2
1682        );
1683        assert_eq!(
1684            bf16::from_f32(min_sub_f * 1.51).to_bits(),
1685            min_sub.to_bits() * 2
1686        );
1687
1688        // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
1689        // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
1690        // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
1691        assert_eq!(
1692            bf16::from_f32(min_sub_f * 2.49).to_bits(),
1693            min_sub.to_bits() * 2
1694        );
1695        assert_eq!(
1696            bf16::from_f32(min_sub_f * 2.50).to_bits(),
1697            min_sub.to_bits() * 2
1698        );
1699        assert_eq!(
1700            bf16::from_f32(min_sub_f * 2.51).to_bits(),
1701            min_sub.to_bits() * 3
1702        );
1703
1704        assert_eq!(
1705            bf16::from_f32(250.49f32).to_bits(),
1706            bf16::from_f32(250.0).to_bits()
1707        );
1708        assert_eq!(
1709            bf16::from_f32(250.50f32).to_bits(),
1710            bf16::from_f32(250.0).to_bits()
1711        );
1712        assert_eq!(
1713            bf16::from_f32(250.51f32).to_bits(),
1714            bf16::from_f32(251.0).to_bits()
1715        );
1716        assert_eq!(
1717            bf16::from_f32(251.49f32).to_bits(),
1718            bf16::from_f32(251.0).to_bits()
1719        );
1720        assert_eq!(
1721            bf16::from_f32(251.50f32).to_bits(),
1722            bf16::from_f32(252.0).to_bits()
1723        );
1724        assert_eq!(
1725            bf16::from_f32(251.51f32).to_bits(),
1726            bf16::from_f32(252.0).to_bits()
1727        );
1728        assert_eq!(
1729            bf16::from_f32(252.49f32).to_bits(),
1730            bf16::from_f32(252.0).to_bits()
1731        );
1732        assert_eq!(
1733            bf16::from_f32(252.50f32).to_bits(),
1734            bf16::from_f32(252.0).to_bits()
1735        );
1736        assert_eq!(
1737            bf16::from_f32(252.51f32).to_bits(),
1738            bf16::from_f32(253.0).to_bits()
1739        );
1740    }
1741
1742    #[test]
1743    #[allow(clippy::erasing_op, clippy::identity_op)]
1744    #[cfg_attr(miri, ignore)]
1745    fn round_to_even_f64() {
1746        // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
1747        let min_sub = bf16::from_bits(1);
1748        let min_sub_f = (-133f64).exp2();
1749        assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1750        assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1751
1752        // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
1753        // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
1754        // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
1755        assert_eq!(
1756            bf16::from_f64(min_sub_f * 0.49).to_bits(),
1757            min_sub.to_bits() * 0
1758        );
1759        assert_eq!(
1760            bf16::from_f64(min_sub_f * 0.50).to_bits(),
1761            min_sub.to_bits() * 0
1762        );
1763        assert_eq!(
1764            bf16::from_f64(min_sub_f * 0.51).to_bits(),
1765            min_sub.to_bits() * 1
1766        );
1767
1768        // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
1769        // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
1770        // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
1771        assert_eq!(
1772            bf16::from_f64(min_sub_f * 1.49).to_bits(),
1773            min_sub.to_bits() * 1
1774        );
1775        assert_eq!(
1776            bf16::from_f64(min_sub_f * 1.50).to_bits(),
1777            min_sub.to_bits() * 2
1778        );
1779        assert_eq!(
1780            bf16::from_f64(min_sub_f * 1.51).to_bits(),
1781            min_sub.to_bits() * 2
1782        );
1783
1784        // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
1785        // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
1786        // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
1787        assert_eq!(
1788            bf16::from_f64(min_sub_f * 2.49).to_bits(),
1789            min_sub.to_bits() * 2
1790        );
1791        assert_eq!(
1792            bf16::from_f64(min_sub_f * 2.50).to_bits(),
1793            min_sub.to_bits() * 2
1794        );
1795        assert_eq!(
1796            bf16::from_f64(min_sub_f * 2.51).to_bits(),
1797            min_sub.to_bits() * 3
1798        );
1799
1800        assert_eq!(
1801            bf16::from_f64(250.49f64).to_bits(),
1802            bf16::from_f64(250.0).to_bits()
1803        );
1804        assert_eq!(
1805            bf16::from_f64(250.50f64).to_bits(),
1806            bf16::from_f64(250.0).to_bits()
1807        );
1808        assert_eq!(
1809            bf16::from_f64(250.51f64).to_bits(),
1810            bf16::from_f64(251.0).to_bits()
1811        );
1812        assert_eq!(
1813            bf16::from_f64(251.49f64).to_bits(),
1814            bf16::from_f64(251.0).to_bits()
1815        );
1816        assert_eq!(
1817            bf16::from_f64(251.50f64).to_bits(),
1818            bf16::from_f64(252.0).to_bits()
1819        );
1820        assert_eq!(
1821            bf16::from_f64(251.51f64).to_bits(),
1822            bf16::from_f64(252.0).to_bits()
1823        );
1824        assert_eq!(
1825            bf16::from_f64(252.49f64).to_bits(),
1826            bf16::from_f64(252.0).to_bits()
1827        );
1828        assert_eq!(
1829            bf16::from_f64(252.50f64).to_bits(),
1830            bf16::from_f64(252.0).to_bits()
1831        );
1832        assert_eq!(
1833            bf16::from_f64(252.51f64).to_bits(),
1834            bf16::from_f64(253.0).to_bits()
1835        );
1836    }
1837
1838    #[cfg(feature = "std")]
1839    #[test]
1840    fn formatting() {
1841        let f = bf16::from_f32(0.1152344);
1842
1843        assert_eq!(format!("{:.3}", f), "0.115");
1844        assert_eq!(format!("{:.4}", f), "0.1152");
1845        assert_eq!(format!("{:+.4}", f), "+0.1152");
1846        assert_eq!(format!("{:>+10.4}", f), "   +0.1152");
1847
1848        assert_eq!(format!("{:.3?}", f), "0.115");
1849        assert_eq!(format!("{:.4?}", f), "0.1152");
1850        assert_eq!(format!("{:+.4?}", f), "+0.1152");
1851        assert_eq!(format!("{:>+10.4?}", f), "   +0.1152");
1852    }
1853
1854    impl quickcheck::Arbitrary for bf16 {
1855        fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1856            bf16(u16::arbitrary(g))
1857        }
1858    }
1859
1860    #[quickcheck]
1861    fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
1862        let roundtrip = bf16::from_f32(f.to_f32());
1863        if f.is_nan() {
1864            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1865        } else {
1866            f.0 == roundtrip.0
1867        }
1868    }
1869
1870    #[quickcheck]
1871    fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
1872        let roundtrip = bf16::from_f64(f.to_f64());
1873        if f.is_nan() {
1874            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1875        } else {
1876            f.0 == roundtrip.0
1877        }
1878    }
1879
1880    #[test]
1881    fn test_max() {
1882        let a = bf16::from_f32(0.0);
1883        let b = bf16::from_f32(42.0);
1884        assert_eq!(a.max(b), b);
1885
1886        let a = bf16::from_f32(42.0);
1887        let b = bf16::from_f32(0.0);
1888        assert_eq!(a.max(b), a);
1889
1890        let a = bf16::NAN;
1891        let b = bf16::from_f32(42.0);
1892        assert_eq!(a.max(b), b);
1893
1894        let a = bf16::from_f32(42.0);
1895        let b = bf16::NAN;
1896        assert_eq!(a.max(b), a);
1897
1898        let a = bf16::NAN;
1899        let b = bf16::NAN;
1900        assert!(a.max(b).is_nan());
1901    }
1902
1903    #[test]
1904    fn test_min() {
1905        let a = bf16::from_f32(0.0);
1906        let b = bf16::from_f32(42.0);
1907        assert_eq!(a.min(b), a);
1908
1909        let a = bf16::from_f32(42.0);
1910        let b = bf16::from_f32(0.0);
1911        assert_eq!(a.min(b), b);
1912
1913        let a = bf16::NAN;
1914        let b = bf16::from_f32(42.0);
1915        assert_eq!(a.min(b), b);
1916
1917        let a = bf16::from_f32(42.0);
1918        let b = bf16::NAN;
1919        assert_eq!(a.min(b), a);
1920
1921        let a = bf16::NAN;
1922        let b = bf16::NAN;
1923        assert!(a.min(b).is_nan());
1924    }
1925}