hexasphere/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
//!
//! Library for subdividing shapes made of triangles.
//!
//! This library defines [`Subdivided<T, S>`](Subdivided). This struct
//! allows one to define a base shape using `S` and the
//! [`BaseShape`] trait, and to subdivide it using the
//! interpolation functions defined as part of `S`.
//!
//! Shapes define the starting vertices and triangles, as well as
//! the type of interpolation used and thus the smooth shape that is approximated.
//! These provided shapes generate **spheres**:
//!
//! - [`shapes::CubeSphere`] (cube)
//! - [`shapes::IcoSphere`] (icosahedron)
//! - [`shapes::NormIcoSphere`] (icosahedron)
//! - [`shapes::TetraSphere`] (tetrahedron)
//!
//! Two flat shapes are also provided:
//!
//! - [`shapes::SquarePlane`]
//! - [`shapes::TrianglePlane`]
//!
//! ## Example usage
//!
//! ```rust
//! use hexasphere::shapes::IcoSphere;
//!
//! fn main() {
//!     // Create a new sphere with 20 subdivisions
//!     // an no data associated with the vertices.
//!     let sphere = IcoSphere::new(20, |_| ());
//!
//!     let points = sphere.raw_points();
//!     for p in points {
//!         println!("{:?} is a point on the sphere!", p);
//!     }
//!     let indices = sphere.get_all_indices();
//!     for triangle in indices.chunks(3) {
//!         println!(
//!             "[{}, {}, {}] is a triangle on the resulting shape",
//!             triangle[0],
//!             triangle[1],
//!             triangle[2],
//!         );
//!     }
//! }
//! ```
//!
//! # Features
//! - `adjacency` allows the user to create neighbour maps from
//! the indices provided by the `Subdivided` struct.
//!
#![cfg_attr(not(feature = "std"), no_std)]

use glam::Vec3A;

#[doc(hidden)]
#[macro_use]
extern crate alloc;

use alloc::boxed::Box;
use alloc::vec::Vec;

use slice::Slice::*;
use slice::*;

#[cfg(feature = "adjacency")]
pub use adjacency::*;

pub mod interpolation;
mod math;
pub mod shapes;
mod slice;
///
/// Defines the geometry of the shape to be subdivided, and the functions
/// used in interpolation.
///
/// If you want to use a different interpolation function,
/// implement this trait for a new type, and carry over only
/// the properties you'd like to keep:
///
/// ```rust
/// # use hexasphere::BaseShape;
/// use hexasphere::{Triangle, shapes::IcoSphereBase};
/// use glam::Vec3A;
/// // Uses linear interpolation instead of spherical.
/// struct FlatIcosahedron;
///
/// impl BaseShape for FlatIcosahedron {
///     // Keep the initial parameters.
///     fn initial_points(&self) -> Vec<Vec3A> {
///         IcoSphereBase.initial_points()
///     }
///
///     fn triangles(&self) -> Box<[Triangle]> {
///         IcoSphereBase.triangles()
///     }
///     const EDGES: usize = IcoSphereBase::EDGES;
///
///     // Swap out what you'd like to change.
///     fn interpolate(&self, a: Vec3A, b: Vec3A, p: f32) -> Vec3A {
///         hexasphere::interpolation::lerp(a, b, p)
///     }
///
///     fn interpolate_half(&self, a: Vec3A, b: Vec3A) -> Vec3A {
///         hexasphere::interpolation::lerp_half(a, b)
///     }
///
///     fn interpolate_multiple(&self, a: Vec3A, b: Vec3A, indices: &[u32], points: &mut [Vec3A]) {
///         hexasphere::interpolation::lerp_multiple(a, b, indices, points);
///     }
/// }
/// ```
///
/// Or, create your own shape, by changing the values for
/// [`initial_points`], [`triangles`], and [`EDGES`]. Check
/// the documentation for these members individually on how
/// they should be implemented.
///
/// [`initial_points`]: #tymethod.initial_points
/// [`triangles`]: #tymethod.triangles
/// [`EDGES`]: #associatedconstant.EDGES
///
pub trait BaseShape {
    ///
    /// The vertices for all main triangles of the shape.
    /// Check the source file for this
    /// crate and look for the constants module at the bottom
    /// for an example.
    ///
    /// Constraints on the points depend on the interpolation
    /// function used:
    /// - `slerp` requires normalized (magnitude 1) data.
    /// - `lerp` doesn't care.
    /// - `normalized_lerp` requires normalized (magnitude 1)
    /// data.
    ///
    fn initial_points(&self) -> Vec<Vec3A>;

    ///
    /// Main triangles for the shape;
    /// that is, the triangles which exist before subdivision.
    ///
    /// See [`Triangle::new()`] for details.
    ///
    fn triangles(&self) -> Box<[Triangle]>;

    ///
    /// Number of unique edges defined in the contents of
    /// `triangles()`. This number is 5 for a square for
    /// example:
    /// ```text
    /// a - 0 - b
    /// |     / |
    /// 3   4   1
    /// | /     |
    /// d - 2 - c
    /// ```
    ///
    const EDGES: usize;

    ///
    /// Basic function used for interpolation. When `p` is
    /// `0.0`, `a` is expected. When `p` is `1.0`, `b` is
    /// expected. There are three options already implemented
    /// in this crate:
    /// - [`lerp`] implements linear interpolation.
    /// - [`geometric_slerp`] implements spherical
    /// interpolation. (Interpolates along an arc on a sphere)
    /// - [`normalized_lerp`] implements cheaper
    /// yet less accurate spherical interpolation. The accuracy
    /// decreases as the angle between the two points on the unit
    /// sphere increases.
    ///
    /// [`lerp`]: ../fn.lerp.html
    /// [`geometric_slerp`]: ../fn.geometric_slerp.html
    /// [`normalized_lerp`]: ../fn.normalized_lerp.html
    ///
    fn interpolate(&self, a: Vec3A, b: Vec3A, p: f32) -> Vec3A;

    ///
    /// If an optimization is available for the case where `p`
    /// is `0.5`, this function should implement it. This defaults
    /// to calling `interpolate(a, b, 0.5)` however.
    ///
    fn interpolate_half(&self, a: Vec3A, b: Vec3A) -> Vec3A {
        self.interpolate(a, b, 0.5)
    }

    ///
    /// If an optimization is available for the case where `p`
    /// varies but `a` and `b` don't, this function should implement
    /// it.
    ///
    /// ### Parameters
    /// - `a`: start.
    /// - `b`: end.
    /// - `indices`: list of indices to index into `points`. `points`
    /// at the index should contain the result. The index (n) of an
    /// index should correspond with the nth point in a distribution
    /// of `indices.len()` points between (exclusive) `a` and `b`.
    /// - `points`: list of points where the results of the calculation
    /// should end up. To be indexed by values in `indices`.
    ///
    fn interpolate_multiple(&self, a: Vec3A, b: Vec3A, indices: &[u32], points: &mut [Vec3A]) {
        for (percent, index) in indices.iter().enumerate() {
            let percent = (percent + 1) as f32 / (indices.len() + 1) as f32;

            points[*index as usize] = self.interpolate(a, b, percent);
        }
    }
}

///
/// Implemented in the case where the triangles on the shape
/// are both equilateral and identifiable from their normal.
///
/// This is only used in the cases of spherical shapes.
///
#[cfg(feature = "shape-extras")]
pub trait EquilateralBaseShape: BaseShape {
    ///
    /// Normals for each of the triangles provided by
    /// [`BaseShape::triangles`].
    ///
    fn triangle_normals() -> &'static [Vec3A];
    ///
    /// Minimum value for the dot product which one could use
    /// to determine that triangle being the closest.
    ///
    /// If the dot product between a vector and a triangle
    /// normal is greater than this, then that vector is
    /// guaranteed to be within that triangle.
    ///
    /// This is also the cosine of the angle of the cone
    /// whose circular edge lies on a triangle.
    ///
    fn triangle_min_dot() -> f32;
}

///
/// The edge between two main triangles.
///
#[derive(Debug, Clone)]
struct Edge {
    ///
    /// Indices of the points between the endpoints.
    ///
    points: Vec<u32>,
    ///
    /// Whether this edge has already been processed
    /// or not for point generation.
    ///
    done: bool,
}

impl Default for Edge {
    fn default() -> Self {
        Self {
            points: Vec::new(),
            done: true,
        }
    }
}

impl Edge {
    pub fn subdivide_n_times(&mut self, n: usize, points: &mut usize) {
        for _ in 0..n {
            self.points.push(*points as _);
            *points += 1;
        }
    }
}

///
/// Contents of one of the main triangular faces.
///
/// This is *not* the entire face, it is the points which do
/// not include the exterior edges and vertices since those are
/// shared.
///
#[derive(Clone, Debug)]
enum TriangleContents {
    ///
    /// Nothing inside the triangle: subdivisions 0 and 1
    ///
    None,
    ///
    /// One point inside the triangle: subdivision 2
    ///
    One(u32),
    ///
    /// Three points inside the triangle: subdivision 3
    ///
    Three { a: u32, b: u32, c: u32 },
    ///
    /// Six points inside the triangle: subdivision 4
    ///
    Six {
        a: u32,
        b: u32,
        c: u32,
        ab: u32,
        bc: u32,
        ca: u32,
    },
    ///
    /// More than six points inside the triangle: subdivision > 4
    ///
    More {
        a: u32,
        b: u32,
        c: u32,
        // Separated into three `my_side_length` segments
        // to save on extra allocations.
        sides: Vec<u32>,
        my_side_length: u32,
        ///
        /// Contents of the inner triangle.
        ///
        // Implementing this as a `Vec<TriangleContents>` would
        // probably be a perf. improvement someday, however not
        // something worth implementing right now.
        contents: Box<TriangleContents>,
    },
}

impl TriangleContents {
    ///
    /// Creates a `None` variant.
    ///
    pub fn none() -> Self {
        Self::None
    }

    ///
    /// Creates a `One` by interpolating two values.
    ///
    fn one(points: &mut usize) -> Self {
        let index = *points as u32;
        *points += 1;
        TriangleContents::One(index)
    }

    fn calculate_one(
        &self,
        ab: Slice<u32>,
        bc: Slice<u32>,
        points: &mut [Vec3A],
        shape: &impl BaseShape,
    ) {
        assert_eq!(ab.len(), bc.len());
        assert_eq!(ab.len(), 2);
        match self {
            TriangleContents::One(idx) => {
                let p1 = points[ab[0] as usize];
                let p2 = points[bc[1] as usize];

                points[*idx as usize] = shape.interpolate_half(p1, p2);
            }
            _ => panic!("Did not find One variant."),
        }
    }

    ///
    /// Creates a `Three` variant from a `One` variant.
    ///
    fn three(&mut self, points: &mut usize) {
        use TriangleContents::*;

        match self {
            &mut One(x) => {
                *points += 2;

                *self = Three {
                    a: x,
                    b: *points as u32 - 2,
                    c: *points as u32 - 1,
                };
            }
            _ => panic!("Self is {:?} while it should be One", self),
        }
    }

    fn calculate_three(
        &self,
        ab: Slice<u32>,
        bc: Slice<u32>,
        ca: Slice<u32>,
        points: &mut [Vec3A],
        shape: &impl BaseShape,
    ) {
        assert_eq!(ab.len(), bc.len());
        assert_eq!(ab.len(), ca.len());
        assert_eq!(ab.len(), 3);

        match self {
            &TriangleContents::Three { a, b, c } => {
                let ab = points[ab[1] as usize];
                let bc = points[bc[1] as usize];
                let ca = points[ca[1] as usize];

                let a_val = shape.interpolate_half(ab, ca);
                let b_val = shape.interpolate_half(bc, ab);
                let c_val = shape.interpolate_half(ca, bc);

                points[a as usize] = a_val;
                points[b as usize] = b_val;
                points[c as usize] = c_val;
            }
            _ => panic!("Did not find Three variant."),
        }
    }

    ///
    /// Creates a `Six` variant from a `Three` variant.
    ///
    fn six(&mut self, points: &mut usize) {
        use TriangleContents::*;

        match self {
            &mut Three {
                a: a_index,
                b: b_index,
                c: c_index,
            } => {
                *points += 3;

                *self = Six {
                    a: a_index,
                    b: b_index,
                    c: c_index,
                    ab: *points as u32 - 3,
                    bc: *points as u32 - 2,
                    ca: *points as u32 - 1,
                };
            }
            _ => panic!("Found {:?} whereas a Three was expected", self),
        }
    }

    fn calculate_six(
        &self,
        ab: Slice<u32>,
        bc: Slice<u32>,
        ca: Slice<u32>,
        points: &mut [Vec3A],
        shape: &impl BaseShape,
    ) {
        assert_eq!(ab.len(), bc.len());
        assert_eq!(ab.len(), ca.len());
        assert_eq!(ab.len(), 4);

        use TriangleContents::*;

        match self {
            &Six {
                a: a_index,
                b: b_index,
                c: c_index,
                ab: ab_index,
                bc: bc_index,
                ca: ca_index,
            } => {
                let aba = points[ab[1] as usize];
                let abb = points[ab[2] as usize];
                let bcb = points[bc[1] as usize];
                let bcc = points[bc[2] as usize];
                let cac = points[ca[1] as usize];
                let caa = points[ca[2] as usize];

                let a = shape.interpolate_half(aba, caa);
                let b = shape.interpolate_half(abb, bcb);
                let c = shape.interpolate_half(bcc, cac);

                let ab = shape.interpolate_half(a, b);
                let bc = shape.interpolate_half(b, c);
                let ca = shape.interpolate_half(c, a);

                points[a_index as usize] = a;
                points[b_index as usize] = b;
                points[c_index as usize] = c;
                points[ab_index as usize] = ab;
                points[bc_index as usize] = bc;
                points[ca_index as usize] = ca;
            }
            _ => panic!("Found {:?} whereas a Three was expected", self),
        }
    }

    ///
    /// Subdivides this given the surrounding points.
    ///
    fn subdivide(&mut self, points: &mut usize) {
        use TriangleContents::*;

        match self {
            None => *self = Self::one(points),
            One(_) => self.three(points),
            Three { .. } => self.six(points),
            &mut Six {
                a,
                b,
                c,
                ab: ab_idx,
                bc: bc_idx,
                ca: ca_idx,
            } => {
                *self = More {
                    a,
                    b,
                    c,
                    sides: vec![ab_idx, bc_idx, ca_idx],
                    my_side_length: 1,
                    contents: Box::new(Self::none()),
                };
                self.subdivide(points);
            }
            More {
                sides,
                contents,
                my_side_length,
                ..
            } => {
                *points += 3;
                let len = *points as u32;
                sides.extend_from_slice(&[len - 3, len - 2, len - 1]);
                *my_side_length += 1;

                contents.subdivide(points);
            }
        }
    }

    pub fn calculate(
        &mut self,
        ab: Slice<u32>,
        bc: Slice<u32>,
        ca: Slice<u32>,
        points: &mut [Vec3A],
        shape: &impl BaseShape,
    ) {
        assert_eq!(ab.len(), bc.len());
        assert_eq!(ab.len(), ca.len());
        assert!(ab.len() >= 2);

        use TriangleContents::*;

        match self {
            None => panic!(),
            One(_) => self.calculate_one(ab, bc, points, shape),
            Three { .. } => self.calculate_three(ab, bc, ca, points, shape),
            Six { .. } => self.calculate_six(ab, bc, ca, points, shape),
            &mut More {
                a: a_idx,
                b: b_idx,
                c: c_idx,
                ref mut sides,
                ref mut contents,
                ref mut my_side_length,
            } => {
                let side_length = *my_side_length as usize;

                let outer_len = ab.len();

                let aba = points[ab[1] as usize];
                let abb = points[ab[outer_len - 2] as usize];
                let bcb = points[bc[1] as usize];
                let bcc = points[bc[outer_len - 2] as usize];
                let cac = points[ca[1] as usize];
                let caa = points[ca[outer_len - 2] as usize];

                points[a_idx as usize] = shape.interpolate_half(aba, caa);
                points[b_idx as usize] = shape.interpolate_half(abb, bcb);
                points[c_idx as usize] = shape.interpolate_half(bcc, cac);

                let ab = &sides[0..side_length];
                let bc = &sides[side_length..side_length * 2];
                let ca = &sides[side_length * 2..];

                shape.interpolate_multiple(
                    points[a_idx as usize],
                    points[b_idx as usize],
                    ab,
                    points,
                );
                shape.interpolate_multiple(
                    points[b_idx as usize],
                    points[c_idx as usize],
                    bc,
                    points,
                );
                shape.interpolate_multiple(
                    points[c_idx as usize],
                    points[a_idx as usize],
                    ca,
                    points,
                );

                contents.calculate(Forward(ab), Forward(bc), Forward(ca), points, shape);
            }
        }
    }

    ///
    /// Indexes the AB edge.
    ///
    /// This is inclusive of A and B.
    ///
    pub fn idx_ab(&self, idx: usize) -> u32 {
        use TriangleContents::*;
        match self {
            None => panic!("Invalid Index, len is 0, but got {}", idx),
            One(x) => {
                if idx != 0 {
                    panic!("Invalid Index, len is 1, but got {}", idx);
                } else {
                    *x
                }
            }
            Three { a, b, .. } => *[a, b][idx],
            Six { a, b, ab, .. } => *[a, ab, b][idx],
            &More {
                a,
                b,
                ref sides,
                my_side_length,
                ..
            } => match idx {
                0 => a,
                x if (1..(my_side_length as usize + 1)).contains(&x) => sides[x - 1],
                x if x == my_side_length as usize + 1 => b,
                _ => panic!(
                    "Invalid Index, len is {}, but got {}",
                    my_side_length + 2,
                    idx
                ),
            },
        }
    }

    ///
    /// Indexes the BC edge.
    ///
    /// This is inclusive of B and C.
    ///
    pub fn idx_bc(&self, idx: usize) -> u32 {
        use TriangleContents::*;
        match self {
            None => panic!("Invalid Index, len is 0, but got {}", idx),
            One(x) => {
                if idx != 0 {
                    panic!("Invalid Index, len is 1, but got {}", idx);
                } else {
                    *x
                }
            }
            Three { c, b, .. } => *[b, c][idx],
            Six { b, c, bc, .. } => *[b, bc, c][idx],
            &More {
                b,
                c,
                ref sides,
                my_side_length,
                ..
            } => match idx {
                0 => b,
                x if (1..(my_side_length as usize + 1)).contains(&x) => {
                    sides[my_side_length as usize + (x - 1)]
                }
                x if x == my_side_length as usize + 1 => c,
                _ => panic!(
                    "Invalid Index, len is {}, but got {}",
                    my_side_length + 2,
                    idx
                ),
            },
        }
    }

    ///
    /// Indexes the CA edge.
    ///
    /// This is inclusive of C and A.
    ///
    pub fn idx_ca(&self, idx: usize) -> u32 {
        use TriangleContents::*;
        match self {
            None => panic!("Invalid Index, len is 0, but got {}", idx),
            One(x) => {
                if idx != 0 {
                    panic!("Invalid Index, len is 1, but got {}", idx);
                } else {
                    *x
                }
            }
            Three { c, a, .. } => *[c, a][idx],
            Six { c, a, ca, .. } => *[c, ca, a][idx],
            &More {
                c,
                a,
                ref sides,
                my_side_length,
                ..
            } => match idx {
                0 => c,
                x if (1..(my_side_length as usize + 1)).contains(&x) => {
                    sides[my_side_length as usize * 2 + x - 1]
                }
                x if x == my_side_length as usize + 1 => a,
                _ => panic!(
                    "Invalid Index, len is {}, but got {}",
                    my_side_length + 2,
                    idx
                ),
            },
        }
    }

    ///
    /// Adds the indices in this portion of the triangle
    /// to the specified buffer in order.
    ///
    pub fn add_indices(&self, buffer: &mut Vec<u32>) {
        use TriangleContents::*;
        match self {
            None | One(_) => {}
            &Three { a, b, c } => buffer.extend_from_slice(&[a, b, c]),
            &Six {
                a,
                b,
                c,
                ab,
                bc,
                ca,
            } => {
                buffer.extend_from_slice(&[a, ab, ca]);
                buffer.extend_from_slice(&[ab, b, bc]);
                buffer.extend_from_slice(&[bc, c, ca]);

                buffer.extend_from_slice(&[ab, bc, ca]);
            }
            &More {
                a,
                b,
                c,
                ref sides,
                my_side_length,
                ref contents,
            } => {
                let my_side_length = my_side_length as usize;
                let ab = &sides[0..my_side_length];
                let bc = &sides[my_side_length..my_side_length * 2];
                let ca = &sides[my_side_length * 2..];

                // Contents are always stored forward.
                add_indices_triangular(
                    a,
                    b,
                    c,
                    Forward(ab),
                    Forward(bc),
                    Forward(ca),
                    &**contents,
                    buffer,
                );
                contents.add_indices(buffer);
            }
        }
    }

    ///
    /// Adds the indices for a wireframe of the triangles
    /// in this portion of the triangle to the specified
    /// buffer in order.
    ///
    pub fn add_line_indices(
        &self,
        buffer: &mut Vec<u32>,
        delta: u32,
        mut breaks: impl FnMut(&mut Vec<u32>),
    ) {
        use TriangleContents::*;
        match self {
            None | One(_) | Three { .. } => {}
            Six { ab, bc, ca, .. } => {
                let ab = core::slice::from_ref(ab);
                let bc = core::slice::from_ref(bc);
                let ca = core::slice::from_ref(ca);
                // buffer.extend_from_slice(&[ab + delta, bc + delta, ca + delta]);
                add_line_indices_triangular(
                    delta,
                    Forward(ab),
                    Forward(bc),
                    Forward(ca),
                    &TriangleContents::None,
                    buffer,
                );
                breaks(buffer);
            }
            &More {
                ref sides,
                my_side_length,
                ref contents,
                ..
            } => {
                let my_side_length = my_side_length as usize;
                let ab = &sides[0..my_side_length];
                let bc = &sides[my_side_length..my_side_length * 2];
                let ca = &sides[my_side_length * 2..];

                // Contents are always stored forward.
                add_line_indices_triangular(
                    delta,
                    Forward(ab),
                    Forward(bc),
                    Forward(ca),
                    &**contents,
                    buffer,
                );
                breaks(buffer);
                contents.add_line_indices(buffer, delta, breaks);
            }
        }
    }
}

#[derive(Clone, Debug)]
///
/// A main triangle on the base shape of a subdivided shape.
///
/// Main triangles are those which are part of the definition of the base shape,
/// rather than created by subdivision.
///
/// The specification of the library expects `a`, `b`, and `c`
/// to be in a counter-clockwise winding.
///
pub struct Triangle {
    pub a: u32,
    pub b: u32,
    pub c: u32,
    pub ab_edge: usize,
    pub bc_edge: usize,
    pub ca_edge: usize,
    pub(crate) ab_forward: bool,
    pub(crate) bc_forward: bool,
    pub(crate) ca_forward: bool,

    pub(crate) contents: TriangleContents,
}

impl Default for Triangle {
    fn default() -> Self {
        Self {
            a: 0,
            b: 0,
            c: 0,
            ab_edge: 0,
            bc_edge: 0,
            ca_edge: 0,
            ab_forward: false,
            bc_forward: false,
            ca_forward: false,
            contents: TriangleContents::None,
        }
    }
}

impl Triangle {
    ///
    /// Creates a new `Triangle` given the necessary data.
    ///
    /// - The fields `a`, `b`, and `c` are the indices into
    ///   [`BaseShape::initial_points()`] which are the vertices
    ///   of this triangle.
    ///   Note that this crate assumes
    ///   points are in a counter-clockwise ordering.
    /// - The fields `ab_edge`, `bc_edge`, `ca_edge` mark the
    ///   index of the edge which `a`/`b`, `b`/`c`, and `c`/`a`
    ///   border respectively. While theoretically you could give
    ///   each triangle its own edge, sharing edges between triangles
    ///   saves on memory footprint and performance.
    ///
    ///   There is no explicit list of edges; they are defined by how
    ///   they are used here. However, the total number of edges must
    ///   be specified in [`BaseShape::EDGES`], and all edge indices
    ///   from 0 to `EDGES - 1` must be used.
    ///
    pub const fn new(
        a: u32,
        b: u32,
        c: u32,
        ab_edge: usize,
        bc_edge: usize,
        ca_edge: usize,
    ) -> Self {
        Self {
            a,
            b,
            c,
            ab_edge,
            bc_edge,
            ca_edge,

            ab_forward: false,
            bc_forward: false,
            ca_forward: false,

            contents: TriangleContents::None,
        }
    }

    fn calculate_edges(
        &mut self,
        edges: &mut [Edge],
        points: &mut [Vec3A],
        shape: &impl BaseShape,
    ) -> usize {
        let mut divide = |p1: u32, p2: u32, edge_idx: usize, forward: &mut bool| {
            if !edges[edge_idx].done {
                shape.interpolate_multiple(
                    points[p1 as usize],
                    points[p2 as usize],
                    &edges[edge_idx].points,
                    points,
                );

                edges[edge_idx].done = true;
                *forward = true;
            } else {
                *forward = false;
            }
        };

        divide(self.a, self.b, self.ab_edge, &mut self.ab_forward);
        divide(self.b, self.c, self.bc_edge, &mut self.bc_forward);
        divide(self.c, self.a, self.ca_edge, &mut self.ca_forward);

        edges[self.ab_edge].points.len()
    }

    ///
    /// Subdivides the edges and contents of this triangle.
    ///
    /// If `calculate` is set to `false`, then the points are
    /// simply added to the buffer and the indices recorded,
    /// but no calculations are performed.
    ///
    fn subdivide(&mut self, points: &mut usize, subdivision_level: usize) {
        if subdivision_level >= 1 {
            self.contents.subdivide(points);
        }
    }

    fn calculate(&mut self, edges: &mut [Edge], points: &mut [Vec3A], shape: &impl BaseShape) {
        let side_length = self.calculate_edges(edges, points, shape) + 1;

        if side_length > 2 {
            let ab = if self.ab_forward {
                Forward(&edges[self.ab_edge].points)
            } else {
                Backward(&edges[self.ab_edge].points)
            };
            let bc = if self.bc_forward {
                Forward(&edges[self.bc_edge].points)
            } else {
                Backward(&edges[self.bc_edge].points)
            };
            let ca = if self.ca_forward {
                Forward(&edges[self.ca_edge].points)
            } else {
                Backward(&edges[self.ca_edge].points)
            };
            self.contents.calculate(ab, bc, ca, points, shape);
        }
    }

    ///
    /// Appends the indices of all the subtriangles onto the
    /// specified buffer.
    ///
    fn add_indices(&self, buffer: &mut Vec<u32>, edges: &[Edge]) {
        let ab = if self.ab_forward {
            Forward(&edges[self.ab_edge].points)
        } else {
            Backward(&edges[self.ab_edge].points)
        };
        let bc = if self.bc_forward {
            Forward(&edges[self.bc_edge].points)
        } else {
            Backward(&edges[self.bc_edge].points)
        };
        let ca = if self.ca_forward {
            Forward(&edges[self.ca_edge].points)
        } else {
            Backward(&edges[self.ca_edge].points)
        };

        add_indices_triangular(self.a, self.b, self.c, ab, bc, ca, &self.contents, buffer);

        self.contents.add_indices(buffer);
    }

    ///
    /// Appends the indices of all the subtriangles' wireframes
    /// onto the specified buffer.
    ///
    fn add_line_indices(
        &self,
        buffer: &mut Vec<u32>,
        edges: &[Edge],
        delta: u32,
        mut breaks: impl FnMut(&mut Vec<u32>),
    ) {
        let ab = if self.ab_forward {
            Forward(&edges[self.ab_edge].points)
        } else {
            Backward(&edges[self.ab_edge].points)
        };
        let bc = if self.bc_forward {
            Forward(&edges[self.bc_edge].points)
        } else {
            Backward(&edges[self.bc_edge].points)
        };
        let ca = if self.ca_forward {
            Forward(&edges[self.ca_edge].points)
        } else {
            Backward(&edges[self.ca_edge].points)
        };

        add_line_indices_triangular(delta, ab, bc, ca, &self.contents, buffer);

        breaks(buffer);

        self.contents.add_line_indices(buffer, delta, breaks);
    }
}

///
/// A subdivided shape generated from some [`BaseShape`] and a subdivision level.
///
/// The subdivided shape is defined, as is conventional in most 3D graphics systems,
/// as a list of vertices, and a list of indices into the vertex list which connect
/// the vertices into primitive shapes. [`Subdivided`] can provide triangle-list indices
/// indices for solid surface rendering, and line-strip indices for wireframe rendering.
///
/// All main triangles specified by `S` in [`BaseShape`]
/// are expected to be in counter clockwise winding.
///
/// Points are preferably stored with coordinates less
/// than or equal to `1.0`. This is why all default shapes
/// lie on the unit sphere.
///
#[derive(Clone)]
pub struct Subdivided<T, S: BaseShape> {
    points: Vec<Vec3A>,
    data: Vec<T>,
    triangles: Box<[Triangle]>,
    shared_edges: Box<[Edge]>,
    subdivisions: usize,
    shape: S,
}

impl<T, S: BaseShape> Subdivided<T, S> {
    /// Creates the base shape from `S` and subdivides it.
    ///
    /// This is equivalent to
    /// `Subdivided::new_custom_shape(subdivisions, generator, S::default())`
    /// and is convenient when `S` implements [`Default`].
    pub fn new(subdivisions: usize, generator: impl FnMut(Vec3A) -> T) -> Self
    where
        S: Default,
    {
        Self::new_custom_shape(subdivisions, generator, S::default())
    }
    ///
    /// Creates the base shape from `S` and subdivides it.
    ///
    /// - `subdivisions` specifies the number of auxiliary points that will be created
    ///   along the edges the vertices of the base shape. For example, if `subdivisions`
    ///   is 0, then the base shape is unaltered; if `subdivisions` is 3, then each edge
    ///   of the base shape will have 3 added points, forming 4 triangle edges.
    ///
    /// - `generator` is a function run for each vertex once all the subdivisions are
    ///   applied, and its values are stored in an internal `Vec`,
    ///   accessible from [`Self::raw_data()`].
    ///
    pub fn new_custom_shape(
        subdivisions: usize,
        generator: impl FnMut(Vec3A) -> T,
        shape: S,
    ) -> Self {
        let mut this = Self {
            points: shape.initial_points(),
            shared_edges: {
                let mut edges = Vec::new();
                edges.resize_with(S::EDGES, Edge::default);
                edges.into_boxed_slice()
            },
            triangles: shape.triangles(),
            subdivisions: 1,
            data: vec![],
            shape,
        };

        let mut new_points = this.points.len();

        for edge in &mut *this.shared_edges {
            edge.subdivide_n_times(subdivisions, &mut new_points);
            edge.done = false;
        }

        for triangle in &mut *this.triangles {
            for i in 0..subdivisions {
                triangle.subdivide(&mut new_points, i);
            }
        }

        let diff = new_points - this.points.len();
        this.points
            .extend(core::iter::repeat(Vec3A::ZERO).take(diff));

        for triangle in &mut *this.triangles {
            triangle.calculate(&mut *this.shared_edges, &mut this.points, &this.shape);
        }

        this.data = this.points.iter().copied().map(generator).collect();

        this
    }

    ///
    /// Increases the current subdivision count by `amount`.
    ///
    /// After calling this, you must call [`Self::calculate_values()`]
    /// to compute new vertex data.
    ///
    pub fn subdivide(&mut self, amount: usize) {
        let mut new_points = self.points.len();

        let subdivision_level = self.shared_edges[0].points.len();

        for edge in &mut *self.shared_edges {
            edge.subdivide_n_times(amount, &mut new_points);
            edge.done = false;
        }

        for triangle in &mut *self.triangles {
            for _ in 0..amount {
                triangle.subdivide(&mut new_points, subdivision_level);
            }
        }

        let diff = new_points - self.points.len();
        self.points
            .extend(core::iter::repeat(Vec3A::ZERO).take(diff));
    }

    ///
    /// Recalculate data after [`Self::subdivide()`].
    ///
    pub fn calculate_values(&mut self, generator: impl FnMut(Vec3A) -> T) {
        for triangle in &mut *self.triangles {
            triangle.calculate(&mut *self.shared_edges, &mut self.points, &self.shape);
        }

        self.data = self.points.iter().copied().map(generator).collect();
    }

    ///
    /// The vertex positions created by the subdivision process.
    ///
    pub fn raw_points(&self) -> &[Vec3A] {
        &self.points
    }

    ///
    /// Appends the indices for the subdivided form of the specified
    /// main triangle into `buffer`.
    ///
    /// The specified `triangle` is a main triangle on the base
    /// shape. The range of this should be limited to the number
    /// of triangles in the base shape.
    ///
    /// Alternatively, use [`Self::get_all_indices`] to get all the
    /// indices.
    ///
    /// Each element put into `buffer` is an index into [`Self::raw_data`]
    /// or [`Self::raw_points`] specifying the position of a triangle vertex.
    /// The first three elements specify the three vertices of a triangle
    /// to be drawn, and the next three elements specify another triangle,
    /// and so on.
    ///
    pub fn get_indices(&self, triangle: usize, buffer: &mut Vec<u32>) {
        self.triangles[triangle].add_indices(buffer, &self.shared_edges);
    }

    ///
    /// Gets the indices for the triangles making up the subdivided shape.
    ///
    /// Each element of the returned [`Vec`] is an index into [`Self::raw_data`]
    /// or [`Self::raw_points`] specifying the position of a triangle vertex.
    /// The first three elements specify the three vertices of a triangle
    /// to be drawn, and the next three elements specify another triangle,
    /// and so on.
    ///
    /// Together, these triangles cover the entire surface of the shape.
    ///
    pub fn get_all_indices(&self) -> Vec<u32> {
        let mut buffer = Vec::new();

        for i in 0..self.triangles.len() {
            self.get_indices(i, &mut buffer);
        }

        buffer
    }

    ///
    /// Appends indices for the wireframe of the subdivided form of
    /// the specified main triangle to `buffer`.
    ///
    /// This is equivalent to [`Self::get_all_line_indices`] except that it
    /// selects a single main triangle from the base shape. See its documentation
    /// for the format of the result, and how to use `delta` and `breaks`.
    ///
    pub fn get_line_indices(
        &self,
        buffer: &mut Vec<u32>,
        triangle: usize,
        delta: usize,
        breaks: impl FnMut(&mut Vec<u32>),
    ) {
        self.triangles[triangle].add_line_indices(buffer, &self.shared_edges, delta as u32, breaks);
    }

    ///
    /// Appends indices for the wireframe of the subdivided form of
    /// the specified main triangle edge to `buffer`.
    ///
    /// The valid range of `edge` is `0..(S::EDGES)`.
    /// See [`Self::get_line_indices`] for more on `delta`.
    ///
    #[deprecated = "Flawed. Use `get_major_edges_line_indices()` instead."]
    pub fn get_major_edge_line_indices(&self, edge: usize, buffer: &mut Vec<u32>, delta: usize) {
        buffer.extend(
            self.shared_edges[edge]
                .points
                .iter()
                .map(|x| x + delta as u32),
        );
    }

    ///
    /// Appends indices for the wireframe of the subdivided form of
    /// the base shape's main triangles' edges to `buffer`.
    ///
    /// Compared to [`Self::get_all_line_indices`], this does not return edges of any of the
    /// triangles which were created by subdivision — only edges of the original triangles.
    /// See that method's documentation for how to use `delta` and `breaks`.
    ///
    pub fn get_major_edges_line_indices(
        &self,
        buffer: &mut Vec<u32>,
        delta: u32,
        mut breaks: impl FnMut(&mut Vec<u32>),
    ) {
        for triangle in &*self.triangles {
            for (p1, p2, edge, forward) in [
                (
                    triangle.a,
                    triangle.b,
                    triangle.ab_edge,
                    triangle.ab_forward,
                ),
                (
                    triangle.b,
                    triangle.c,
                    triangle.bc_edge,
                    triangle.bc_forward,
                ),
                (
                    triangle.c,
                    triangle.a,
                    triangle.ca_edge,
                    triangle.ca_forward,
                ),
            ] {
                if !forward {
                    continue;
                }

                buffer.push(p1 + delta);
                buffer.extend(self.shared_edges[edge].points.iter().map(|x| x + delta));
                buffer.push(p2 + delta);

                breaks(buffer);
            }
        }
    }

    ///
    /// Returns a vector of indices for the wireframe of the subdivided mesh.
    ///
    /// Each element in the returned [`Vec`] is an index into [`Self::raw_data`]
    /// or [`Self::raw_points`] specifying the position of a triangle vertex.
    /// The indices are formatted as "line strips"; that is, each vertex
    /// should be connected to the previous by a line, except where a break is
    /// specified.
    ///
    /// The `breaks` function is run every time there is a necessary break in
    /// the line strip. Use this to, for example, swap out the buffer using
    /// [`std::mem::take`], or push a special break-marking index into the buffer.
    ///
    /// `delta` is added to all of the indices pushed into the buffer, and
    /// is generally intended to be used together with `breaks` to allow a
    /// marker index at zero.
    /// This marker index might be used to refer to a vertex with position
    /// set to NaN, or parsed in some other way by the graphics API the indices
    /// are fed to.
    ///
    pub fn get_all_line_indices(
        &self,
        delta: usize,
        mut breaks: impl FnMut(&mut Vec<u32>),
    ) -> Vec<u32> {
        let mut buffer = Vec::new();

        // Pushes all of the subdivision-created lines that are *not* part of `self.shared_edges`.
        for i in 0..self.triangles.len() {
            self.get_line_indices(&mut buffer, i, delta, &mut breaks);
            breaks(&mut buffer);
        }

        let delta = delta as u32;
        self.get_major_edges_line_indices(&mut buffer, delta, &mut breaks);

        buffer
    }

    ///
    /// Returns the number of subdivisions applied when this shape
    /// was created.
    ///
    pub fn subdivisions(&self) -> usize {
        self.subdivisions
    }

    ///
    /// Returns the custom data for each vertex created by the generator function.
    ///
    /// The length of this slice is equal to the number of vertices in the subdivided shape.
    ///
    pub fn raw_data(&self) -> &[T] {
        &self.data
    }

    ///
    /// Returns mutable access to the custom data created by the generator function.
    ///
    /// The length of this slice is equal to the number of vertices in the subdivided shape.
    ///
    pub fn raw_data_mut(&mut self) -> &mut [T] {
        &mut self.data
    }

    ///
    /// Calculate the number of indices which each main
    /// triangle will add to the vertex buffer.
    ///
    /// # Equation
    ///
    /// ```text
    /// (subdivisions + 1)²
    /// ```
    ///
    pub fn indices_per_main_triangle(&self) -> usize {
        (self.subdivisions + 1) * (self.subdivisions + 1)
    }

    ///
    /// Calculate the number of vertices contained within
    /// each main triangle including the vertices which are
    /// shared with another main triangle.
    ///
    /// # Equation
    ///
    /// ```text
    /// (subdivisions + 1) * (subdivisions + 2) / 2
    /// ```
    ///
    pub fn vertices_per_main_triangle_shared(&self) -> usize {
        (self.subdivisions + 1) * (self.subdivisions + 2) / 2
    }

    ///
    /// Calculate the number of vertices contained within each
    /// main triangle excluding the ones that are shared with
    /// other main triangles.
    ///
    /// # Equation
    ///
    /// ```text
    /// {
    /// { subdivisions < 2  : 0
    /// {
    /// { subdivisions >= 2 : (subdivisions - 1) * subdivisions / 2
    /// {
    /// ```
    ///
    pub fn vertices_per_main_triangle_unique(&self) -> usize {
        if self.subdivisions < 2 {
            return 0;
        }
        (self.subdivisions - 1) * self.subdivisions / 2
    }

    ///
    /// Calculate the number of vertices along the edges
    /// of the main triangles and the vertices of the main
    /// triangles.
    ///
    /// # Equation
    ///
    /// ```text
    /// subdivisions * EDGES + INITIAL_POINTS
    /// ```
    ///
    pub fn shared_vertices(&self) -> usize {
        self.subdivisions * S::EDGES + self.shape.initial_points().len()
    }

    ///
    /// Linear distance between two points on this shape.
    ///
    pub fn linear_distance(&self, p1: u32, p2: u32, radius: f32) -> f32 {
        (self.points[p1 as usize] - self.points[p2 as usize]).length() * radius
    }
}

#[cfg(feature = "shape-extras")]
impl<T, S: BaseShape + EquilateralBaseShape> Subdivided<T, S> {
    ///
    /// Closest "main" triangle.
    ///
    /// Undefined results if the point is one of the vertices
    /// on the original base shape.
    ///
    pub fn main_triangle_intersect(point: Vec3A) -> usize {
        let point = point.normalize();
        let mut nearest = 0;
        let mut near_factor = point.dot(S::triangle_normals()[0]);

        if near_factor > S::triangle_min_dot() {
            return 0;
        }

        for (index, normal) in S::triangle_normals().iter().enumerate().skip(1) {
            let factor = normal.dot(point);
            if factor > near_factor {
                if factor > S::triangle_min_dot() {
                    return index;
                }
                nearest = index;
                near_factor = factor;
            }
        }

        nearest
    }

    ///
    /// Distance between two points on this sphere (assuming this
    /// is a sphere).
    ///
    pub fn spherical_distance(&self, p1: u32, p2: u32, radius: f32) -> f32 {
        self.points[p1 as usize]
            .dot(self.points[p2 as usize])
            .acos()
            * radius
    }
}

///
/// Adds the indices of the triangles in this "layer" of the triangle to
/// the buffer.
///
// The logic in this function has been worked out mostly on pen and paper
// and therefore it is difficult to read.
fn add_indices_triangular(
    a: u32,
    b: u32,
    c: u32,
    ab: Slice<u32>,
    bc: Slice<u32>,
    ca: Slice<u32>,
    contents: &TriangleContents,
    buffer: &mut Vec<u32>,
) {
    let subdivisions = ab.len();
    if subdivisions == 0 {
        buffer.extend_from_slice(&[a, b, c]);
        return;
    } else if subdivisions == 1 {
        buffer.extend_from_slice(&[a, ab[0], ca[0]]);
        buffer.extend_from_slice(&[b, bc[0], ab[0]]);
        buffer.extend_from_slice(&[c, ca[0], bc[0]]);
        buffer.extend_from_slice(&[ab[0], bc[0], ca[0]]);
        return;
    } else if subdivisions == 2 {
        buffer.extend_from_slice(&[a, ab[0], ca[1]]);
        buffer.extend_from_slice(&[b, bc[0], ab[1]]);
        buffer.extend_from_slice(&[c, ca[0], bc[1]]);

        buffer.extend_from_slice(&[ab[1], contents.idx_ab(0), ab[0]]);
        buffer.extend_from_slice(&[bc[1], contents.idx_ab(0), bc[0]]);
        buffer.extend_from_slice(&[ca[1], contents.idx_ab(0), ca[0]]);

        buffer.extend_from_slice(&[ab[0], contents.idx_ab(0), ca[1]]);
        buffer.extend_from_slice(&[bc[0], contents.idx_ab(0), ab[1]]);
        buffer.extend_from_slice(&[ca[0], contents.idx_ab(0), bc[1]]);
        return;
    }

    let last_idx = ab.len() - 1;

    buffer.extend_from_slice(&[a, ab[0], ca[last_idx]]);
    buffer.extend_from_slice(&[b, bc[0], ab[last_idx]]);
    buffer.extend_from_slice(&[c, ca[0], bc[last_idx]]);

    buffer.extend_from_slice(&[ab[0], contents.idx_ab(0), ca[last_idx]]);
    buffer.extend_from_slice(&[bc[0], contents.idx_bc(0), ab[last_idx]]);
    buffer.extend_from_slice(&[ca[0], contents.idx_ca(0), bc[last_idx]]);

    for i in 0..last_idx - 1 {
        // Exclude special case: last_idx - 1.
        // AB
        buffer.extend_from_slice(&[ab[i], ab[i + 1], contents.idx_ab(i)]);
        buffer.extend_from_slice(&[ab[i + 1], contents.idx_ab(i + 1), contents.idx_ab(i)]);
        // BC
        buffer.extend_from_slice(&[bc[i], bc[i + 1], contents.idx_bc(i)]);
        buffer.extend_from_slice(&[bc[i + 1], contents.idx_bc(i + 1), contents.idx_bc(i)]);
        // CA
        buffer.extend_from_slice(&[ca[i], ca[i + 1], contents.idx_ca(i)]);
        buffer.extend_from_slice(&[ca[i + 1], contents.idx_ca(i + 1), contents.idx_ca(i)]);
    }

    // Deal with special case: last_idx - 1
    buffer.extend_from_slice(&[
        ab[last_idx],
        contents.idx_ab(last_idx - 1),
        ab[last_idx - 1],
    ]);

    buffer.extend_from_slice(&[
        bc[last_idx],
        contents.idx_bc(last_idx - 1),
        bc[last_idx - 1],
    ]);

    buffer.extend_from_slice(&[
        ca[last_idx],
        contents.idx_ca(last_idx - 1),
        ca[last_idx - 1],
    ]);
}

/// Adds the indices of the triangles in this "layer" of the triangle to
/// the buffer in line strip format.
///
/// Does the zig-zag between the current one and the contents,
/// and also the ring of the contents. (Since the outermost
/// ring is dealt with separately by `get_major_edge_line_indices`.
///
/// This is used to create a wireframe look.
///
// Like the previous function, this logic has been worked out mostly on
// pen and paper and it is therefore difficult to read.
fn add_line_indices_triangular(
    delta: u32,
    ab: Slice<u32>,
    bc: Slice<u32>,
    ca: Slice<u32>,
    contents: &TriangleContents,
    buffer: &mut Vec<u32>,
) {
    // if the number of points on our edge is zero, we have
    // no interior, and no zigzag
    if ab.len() == 0 {
        return;
    }

    // if the number of points on our edge is one, there is no
    // interior, and there is only the zigzag
    if ab.len() == 1 {
        #[rustfmt::skip]
        buffer.extend_from_slice(&[
            ab[0] + delta,
            bc[0] + delta,
            ca[0] + delta,
            ab[0] + delta,
        ]);
        return;
    }

    // if the number of points on our edge is two, then `contents`
    // is a single point and we get a three leaf clover
    if ab.len() == 2 {
        let inner = contents.idx_ab(0);
        buffer.extend_from_slice(&[
            inner + delta,
            ab[1] + delta,
            bc[0] + delta,
            inner + delta,
            bc[1] + delta,
            ca[0] + delta,
            inner + delta,
            ca[1] + delta,
            ab[0] + delta,
            inner + delta,
        ]);
        return;
    }

    buffer.reserve((ab.len() - 1) * 9);

    // Add the inner loop
    for i in 0..ab.len() - 2 {
        buffer.push(contents.idx_ab(i) + delta);
    }

    for i in 0..bc.len() - 2 {
        buffer.push(contents.idx_bc(i) + delta);
    }

    for i in 0..ca.len() - 2 {
        buffer.push(contents.idx_ca(i) + delta);
    }

    // close the inner loop
    buffer.push(contents.idx_ab(0) + delta);

    // do zigzag
    buffer.push(ab[0] + delta);

    for i in (1..ca.len()).rev() {
        buffer.push(ca[i] + delta);
        buffer.push(contents.idx_ca(i - 1) + delta);
    }

    buffer.push(ca[0] + delta);

    for i in (1..bc.len()).rev() {
        buffer.push(bc[i] + delta);
        buffer.push(contents.idx_bc(i - 1) + delta);
    }

    buffer.push(bc[0] + delta);

    for i in (1..ab.len()).rev() {
        buffer.push(ab[i] + delta);
        buffer.push(contents.idx_ab(i - 1) + delta);
    }

    buffer.push(ab[0] + delta);
}

#[cfg(feature = "adjacency")]
///
/// Implements neighbour tracking.
///
mod adjacency {
    use alloc::vec::Vec;
    use tinyvec::ArrayVec;

    #[derive(Copy, Clone, Eq, PartialEq, Debug)]
    pub(crate) enum RehexState {
        Empty,
        Clear,
        TwoTwo,
        ThreeTwo,
        TwoTwoTwo,
        Complete,
    }

    /// Tracks the neighbours adjacent to each vertex by only using index data.
    ///
    /// The result preserves winding: the resulting array is wound around the
    /// center vertex in the same way that the source triangles were wound.
    pub struct AdjacencyBuilder {
        pub(crate) state: Vec<RehexState>,
        pub result: Vec<ArrayVec<[usize; 6]>>,
    }

    impl AdjacencyBuilder {
        pub fn new(points_len: usize) -> Self {
            let state = core::iter::repeat(RehexState::Empty)
                .take(points_len)
                .collect::<Vec<_>>();
            let result = core::iter::repeat(ArrayVec::new())
                .take(points_len)
                .collect::<Vec<_>>();
            Self { state, result }
        }

        pub fn add_indices(&mut self, indices: &[u32]) {
            for chunk in indices.chunks_exact(3) {
                let &[a, b, c] = chunk else { unreachable!() };

                self.add_triangle(a, b, c);
                self.add_triangle(c, a, b);
                self.add_triangle(b, c, a);
            }
        }

        pub fn finish(self) -> Vec<ArrayVec<[usize; 6]>> {
            self.result
        }

        fn add_triangle(&mut self, a: u32, b: u32, c: u32) {
            let (a, b, c) = (a as usize, b as usize, c as usize);
            let state = &mut self.state[a];
            if let RehexState::Complete = state {
                return;
            }

            let result = &mut self.result[a];

            match state {
                RehexState::Empty => {
                    result.extend([b, c]);
                    *state = RehexState::Clear;
                }
                RehexState::Clear => {
                    if result[result.len() - 1] == b {
                        if result[0] == c {
                            *state = RehexState::Complete;
                        } else {
                            result.push(c);
                            if result.len() == 6 {
                                *state = RehexState::Complete;
                            }
                        }
                    } else if result[0] == c {
                        result.insert(0, b);
                        if result.len() == 6 {
                            *state = RehexState::Complete;
                        }
                    } else {
                        *state = match result.len() {
                            2 => RehexState::TwoTwo,
                            3 => RehexState::ThreeTwo,
                            4 => RehexState::Complete,
                            _ => unreachable!(),
                        };
                        result.extend([b, c]);
                    }
                }
                RehexState::TwoTwo => {
                    if result[1] == b {
                        if result[2] == c {
                            *state = RehexState::Clear;
                        } else {
                            result.insert(2, c);
                            *state = RehexState::ThreeTwo;
                        }
                    } else if result[0] == c {
                        if result[3] == b {
                            let temp = result[2];
                            result.pop();
                            result.pop();
                            result.insert(0, temp);
                            result.insert(1, b);
                            *state = RehexState::Clear;
                        } else {
                            result.insert(0, b);
                            *state = RehexState::ThreeTwo;
                        }
                    } else if result[2] == c {
                        result.insert(0, b);
                        let t2 = result.swap_remove(2);
                        let t1 = result.swap_remove(1);
                        result.push(t1);
                        result.push(t2);
                        *state = RehexState::ThreeTwo;
                    } else {
                        result.extend([b, c]);
                        *state = RehexState::TwoTwoTwo;
                    }
                }
                RehexState::ThreeTwo => {
                    if result[2] == b {
                        if result[3] == c {
                            *state = RehexState::Clear;
                        } else {
                            result.insert(3, c);
                            *state = RehexState::Complete;
                        }
                    } else {
                        if result[4] == b {
                            result.pop();
                            let temp = result.pop().unwrap();
                            result.insert(0, b);
                            result.insert(0, temp);
                            *state = RehexState::Clear;
                        } else {
                            result.insert(0, b);
                            *state = RehexState::Complete;
                        }
                    }
                }
                RehexState::TwoTwoTwo => {
                    if (result[1] != b || result[2] != c)
                        && (result[3] != b || result[4] != c)
                        && (result[5] != b || result[0] != c)
                    {
                        let t2 = result.swap_remove(3);
                        let t1 = result.swap_remove(2);
                        result.extend([t1, t2]);
                    }
                    *state = RehexState::Complete;
                }
                RehexState::Complete => unreachable!(),
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::shapes::{IcoSphere, SquarePlane};
    use crate::Slice::Forward;
    use alloc::vec::Vec;
    use glam::Vec3A;

    // Starting points aren't _quite_ precise enough to use `f32::EPSILON`.
    const EPSILON: f32 = 0.0000002;

    #[test]
    fn slerp_one() {
        use crate::interpolation::geometric_slerp_half;
        let p1 = Vec3A::new(0.360492952832, 0.932761936915, 0.0);
        let p2 = Vec3A::new(0.975897449331, 0.218229623081, 0.0);

        let expected = Vec3A::new(0.757709663147, 0.652591806854, 0.0);

        let result = geometric_slerp_half(p1, p2);

        assert!((expected - result).length() <= EPSILON);

        // Another test case
        let p1 = Vec3A::new(-0.24953852315, 0.0, 0.968364872073);
        let p2 = Vec3A::new(-0.948416666565, 0.0, 0.317026539239);

        let expected = Vec3A::new(-0.681787771301, 0.0, 0.731550022148);

        let result = geometric_slerp_half(p1, p2);

        assert!((expected - result).length() <= EPSILON);
    }

    #[test]
    fn slerp_many() {
        use crate::interpolation::geometric_slerp_multiple;

        let p1 = Vec3A::new(0.0, -0.885330189449, 0.464962854054);
        let p2 = Vec3A::new(0.0, 0.946042343528, 0.324043028395);

        let expected = Vec3A::new(0.0, 0.0767208624118, 0.997052611085);

        let mut result = Vec3A::ZERO;
        geometric_slerp_multiple(p1, p2, &[0], core::slice::from_mut(&mut result));

        assert!((expected - result).length() <= EPSILON);

        let p1 = Vec3A::new(0.876621956288, 0.0, 0.481179743707);
        let p2 = Vec3A::new(-0.391617625614, 0.0, -0.920128053756);

        let expected = [
            Vec3A::new(0.999975758841, 0.0, 0.00696288230076),
            Vec3A::new(0.883237589397, 0.0, -0.468925751774),
            Vec3A::new(0.554436024709, 0.0, -0.83222634812),
            Vec3A::new(0.0925155945469, 0.0, -0.995711235633),
        ];

        let mut result = [Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO, Vec3A::ZERO];

        geometric_slerp_multiple(p1, p2, &[0, 1, 2, 3], &mut result);

        for (&expected, &result) in expected.iter().zip(result.iter()) {
            assert!((expected - result).length() <= EPSILON);
        }
    }

    #[test]
    fn new() {
        let x = IcoSphere::new(0, |_| ());
        x.get_indices(0, &mut Vec::new());
    }

    #[test]
    fn clone() {
        let _x = IcoSphere::new(6, |_| ()).clone();
    }

    #[test]
    fn one() {
        let x = IcoSphere::new(1, |_| ());
        x.get_indices(0, &mut Vec::new());
    }

    #[test]
    fn second_layer_inner() {
        let x = IcoSphere::new(2, |_| ());
        x.get_indices(0, &mut Vec::new());
        let x = IcoSphere::new(3, |_| ());
        x.get_indices(0, &mut Vec::new());
        let x = IcoSphere::new(5, |_| ());
        x.get_indices(0, &mut Vec::new());
        let x = IcoSphere::new(6, |_| ());
        x.get_indices(0, &mut Vec::new());
    }

    #[test]
    fn indices_zero() {
        use super::add_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_indices_triangular(
            0,
            1,
            2,
            Forward(&[]),
            Forward(&[]),
            Forward(&[]),
            &TriangleContents::none(),
            &mut buffer,
        );

        assert_eq!(buffer, &[0, 1, 2]);
    }

    #[test]
    fn indices_one() {
        use super::add_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_indices_triangular(
            0,
            1,
            2,
            Forward(&[3]),
            Forward(&[4]),
            Forward(&[5]),
            &TriangleContents::none(),
            &mut buffer,
        );

        assert_eq!(buffer, &[0, 3, 5, 1, 4, 3, 2, 5, 4, 3, 4, 5,]);
    }

    #[test]
    fn indices_two() {
        use super::add_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_indices_triangular(
            0,
            3,
            6,
            Forward(&[1, 2]),
            Forward(&[4, 5]),
            Forward(&[7, 8]),
            &TriangleContents::One(9),
            &mut buffer,
        );

        assert_eq!(
            buffer,
            &[0, 1, 8, 3, 4, 2, 6, 7, 5, 2, 9, 1, 5, 9, 4, 8, 9, 7, 1, 9, 8, 4, 9, 2, 7, 9, 5,]
        );
    }

    // Really, we're testing for the rest.
    #[test]
    fn indices_three() {
        use super::add_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_indices_triangular(
            0,
            4,
            8,
            Forward(&[1, 2, 3]),
            Forward(&[5, 6, 7]),
            Forward(&[9, 10, 11]),
            &TriangleContents::Three {
                a: 12,
                b: 13,
                c: 14,
            },
            &mut buffer,
        );

        assert_eq!(
            buffer,
            &[
                0, 1, 11, 4, 5, 3, 8, 9, 7, 1, 12, 11, 5, 13, 3, 9, 14, 7, 1, 2, 12, 2, 13, 12, 5,
                6, 13, 6, 14, 13, 9, 10, 14, 10, 12, 14, 3, 13, 2, 7, 14, 6, 11, 12, 10,
            ][..]
        );
    }

    #[test]
    fn precision() {
        let sphere = IcoSphere::new(10, |_| ());

        for i in sphere.raw_points() {
            assert!(i.length() - 1.0 <= EPSILON);
        }
    }

    #[test]
    fn line_one() {
        use super::add_line_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_line_indices_triangular(
            0,
            Forward(&[0]),
            Forward(&[1]),
            Forward(&[2]),
            &TriangleContents::none(),
            &mut buffer,
        );

        assert_eq!(buffer, &[0, 1, 2, 0]);
    }

    #[test]
    fn line_two() {
        use super::add_line_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_line_indices_triangular(
            0,
            Forward(&[0, 1]),
            Forward(&[2, 3]),
            Forward(&[4, 5]),
            &TriangleContents::One(6),
            &mut buffer,
        );

        assert_eq!(buffer, &[6, 1, 2, 6, 3, 4, 6, 5, 0, 6]);
    }

    #[test]
    fn line_three() {
        use super::add_line_indices_triangular;
        use super::TriangleContents;

        let mut buffer = Vec::new();

        add_line_indices_triangular(
            0,
            Forward(&[0, 1, 2]),
            Forward(&[3, 4, 5]),
            Forward(&[6, 7, 8]),
            &TriangleContents::Three { a: 9, b: 10, c: 11 },
            &mut buffer,
        );

        assert_eq!(
            buffer,
            &[9, 10, 11, 9, 0, 8, 9, 7, 11, 6, 5, 11, 4, 10, 3, 2, 10, 1, 9, 0]
        );
    }

    #[test]
    fn getting_major_edges() {
        // Use the square shape because it has few and simple vertices.
        let square = SquarePlane::new(1, |_| ());

        let mut buffer = Vec::new();
        square.get_major_edges_line_indices(&mut buffer, 1, |v| v.push(0));

        assert_eq!(
            buffer,
            vec![
                // Note: this is a list of five edges because the square is two triangles,
                // so there is a diagonal edge which counts as a major edge.
                // Each one has 2 original vertices and 1 interpolated vertex.
                1, 6, 2, 0, //
                2, 7, 3, 0, //
                3, 5, 1, 0, //
                3, 8, 4, 0, //
                4, 9, 1, 0, //
            ]
        );
    }

    #[cfg(feature = "adjacency")]
    mod adjacency {
        use alloc::vec::Vec;

        use crate::adjacency::RehexState;
        use crate::{adjacency::AdjacencyBuilder, shapes::IcoSphere};

        #[test]
        fn creation() {
            let sphere = IcoSphere::new(5, |_| ());

            let mut indices = Vec::new();

            for i in 0..20 {
                sphere.get_indices(i, &mut indices);
            }

            let mut builder = AdjacencyBuilder::new(sphere.raw_points().len());
            builder.add_indices(&indices);
            builder
                .state
                .iter()
                .for_each(|&state| assert_eq!(state, RehexState::Complete));
        }
    }
}