1use num_traits::{NumCast, ToPrimitive, Zero};
7use std::f32;
8use std::ops::Mul;
9
10use crate::imageops::filter_1d::{
11 filter_2d_sep_la, filter_2d_sep_la_f32, filter_2d_sep_la_u16, filter_2d_sep_plane,
12 filter_2d_sep_plane_f32, filter_2d_sep_plane_u16, filter_2d_sep_rgb, filter_2d_sep_rgb_f32,
13 filter_2d_sep_rgb_u16, filter_2d_sep_rgba, filter_2d_sep_rgba_f32, filter_2d_sep_rgba_u16,
14 FilterImageSize,
15};
16use crate::images::buffer::{Gray16Image, GrayAlpha16Image, Rgb16Image, Rgba16Image};
17use crate::traits::{Enlargeable, Pixel, Primitive};
18use crate::utils::clamp;
19use crate::{
20 DynamicImage, GenericImage, GenericImageView, GrayAlphaImage, GrayImage, ImageBuffer,
21 Rgb32FImage, RgbImage, Rgba32FImage, RgbaImage,
22};
23
24#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
91#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
92pub enum FilterType {
93 Nearest,
95
96 Triangle,
98
99 CatmullRom,
101
102 Gaussian,
104
105 Lanczos3,
107}
108
109pub(crate) struct Filter<'a> {
111 pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>,
113
114 pub(crate) support: f32,
116}
117
118struct FloatNearest(f32);
119
120impl ToPrimitive for FloatNearest {
123 fn to_i8(&self) -> Option<i8> {
126 self.0.round().to_i8()
127 }
128 fn to_i16(&self) -> Option<i16> {
129 self.0.round().to_i16()
130 }
131 fn to_i64(&self) -> Option<i64> {
132 self.0.round().to_i64()
133 }
134 fn to_u8(&self) -> Option<u8> {
135 self.0.round().to_u8()
136 }
137 fn to_u16(&self) -> Option<u16> {
138 self.0.round().to_u16()
139 }
140 fn to_u64(&self) -> Option<u64> {
141 self.0.round().to_u64()
142 }
143 fn to_f64(&self) -> Option<f64> {
144 self.0.to_f64()
145 }
146}
147
148fn sinc(t: f32) -> f32 {
150 let a = t * f32::consts::PI;
151
152 if t == 0.0 {
153 1.0
154 } else {
155 a.sin() / a
156 }
157}
158
159fn lanczos(x: f32, t: f32) -> f32 {
161 if x.abs() < t {
162 sinc(x) * sinc(x / t)
163 } else {
164 0.0
165 }
166}
167
168fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 {
171 let a = x.abs();
172
173 let k = if a < 1.0 {
174 (12.0 - 9.0 * b - 6.0 * c) * a.powi(3)
175 + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2)
176 + (6.0 - 2.0 * b)
177 } else if a < 2.0 {
178 (-b - 6.0 * c) * a.powi(3)
179 + (6.0 * b + 30.0 * c) * a.powi(2)
180 + (-12.0 * b - 48.0 * c) * a
181 + (8.0 * b + 24.0 * c)
182 } else {
183 0.0
184 };
185
186 k / 6.0
187}
188
189pub(crate) fn gaussian(x: f32, r: f32) -> f32 {
192 ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp()
193}
194
195pub(crate) fn lanczos3_kernel(x: f32) -> f32 {
197 lanczos(x, 3.0)
198}
199
200pub(crate) fn gaussian_kernel(x: f32) -> f32 {
203 gaussian(x, 0.5)
204}
205
206pub(crate) fn catmullrom_kernel(x: f32) -> f32 {
209 bc_cubic_spline(x, 0.0, 0.5)
210}
211
212pub(crate) fn triangle_kernel(x: f32) -> f32 {
215 if x.abs() < 1.0 {
216 1.0 - x.abs()
217 } else {
218 0.0
219 }
220}
221
222pub(crate) fn box_kernel(_x: f32) -> f32 {
226 1.0
227}
228
229fn horizontal_sample<P, S>(
237 image: &Rgba32FImage,
238 new_width: u32,
239 filter: &mut Filter,
240) -> ImageBuffer<P, Vec<S>>
241where
242 P: Pixel<Subpixel = S> + 'static,
243 S: Primitive + 'static,
244{
245 let (width, height) = image.dimensions();
246 assert!(
248 width != 0 || height == 0,
250 "Unexpected prior allocation size. This case should have been handled by the caller"
251 );
252
253 let mut out = ImageBuffer::new(new_width, height);
254 out.copy_color_space_from(image);
255 let mut ws = Vec::new();
256
257 let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap();
258 let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap();
259 let ratio = width as f32 / new_width as f32;
260 let sratio = if ratio < 1.0 { 1.0 } else { ratio };
261 let src_support = filter.support * sratio;
262
263 for outx in 0..new_width {
264 let inputx = (outx as f32 + 0.5) * ratio;
267
268 let left = (inputx - src_support).floor() as i64;
275 let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32;
276
277 let right = (inputx + src_support).ceil() as i64;
278 let right = clamp(
279 right,
280 <i64 as From<_>>::from(left) + 1,
281 <i64 as From<_>>::from(width),
282 ) as u32;
283
284 let inputx = inputx - 0.5;
287
288 ws.clear();
289 let mut sum = 0.0;
290 for i in left..right {
291 let w = (filter.kernel)((i as f32 - inputx) / sratio);
292 ws.push(w);
293 sum += w;
294 }
295 for w in ws.iter_mut() {
296 *w /= sum;
297 }
298
299 for y in 0..height {
300 let mut t = (0.0, 0.0, 0.0, 0.0);
301
302 for (i, w) in ws.iter().enumerate() {
303 let p = image.get_pixel(left + i as u32, y);
304
305 #[allow(deprecated)]
306 let vec = p.channels4();
307
308 t.0 += vec.0 * w;
309 t.1 += vec.1 * w;
310 t.2 += vec.2 * w;
311 t.3 += vec.3 * w;
312 }
313
314 #[allow(deprecated)]
315 let t = Pixel::from_channels(
316 NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(),
317 NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(),
318 NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(),
319 NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(),
320 );
321
322 out.put_pixel(outx, y, t);
323 }
324 }
325
326 out
327}
328
329pub fn sample_bilinear<P: Pixel>(
331 img: &impl GenericImageView<Pixel = P>,
332 u: f32,
333 v: f32,
334) -> Option<P> {
335 if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
336 return None;
337 }
338
339 let (w, h) = img.dimensions();
340 if w == 0 || h == 0 {
341 return None;
342 }
343
344 let ui = w as f32 * u - 0.5;
345 let vi = h as f32 * v - 0.5;
346 interpolate_bilinear(
347 img,
348 ui.max(0.).min((w - 1) as f32),
349 vi.max(0.).min((h - 1) as f32),
350 )
351}
352
353pub fn sample_nearest<P: Pixel>(
355 img: &impl GenericImageView<Pixel = P>,
356 u: f32,
357 v: f32,
358) -> Option<P> {
359 if ![u, v].iter().all(|c| (0.0..=1.0).contains(c)) {
360 return None;
361 }
362
363 let (w, h) = img.dimensions();
364 let ui = w as f32 * u - 0.5;
365 let ui = ui.max(0.).min((w.saturating_sub(1)) as f32);
366
367 let vi = h as f32 * v - 0.5;
368 let vi = vi.max(0.).min((h.saturating_sub(1)) as f32);
369 interpolate_nearest(img, ui, vi)
370}
371
372pub fn interpolate_nearest<P: Pixel>(
379 img: &impl GenericImageView<Pixel = P>,
380 x: f32,
381 y: f32,
382) -> Option<P> {
383 let (w, h) = img.dimensions();
384 if w == 0 || h == 0 {
385 return None;
386 }
387 if !(0.0..=((w - 1) as f32)).contains(&x) {
388 return None;
389 }
390 if !(0.0..=((h - 1) as f32)).contains(&y) {
391 return None;
392 }
393
394 Some(img.get_pixel(x.round() as u32, y.round() as u32))
395}
396
397pub fn interpolate_bilinear<P: Pixel>(
399 img: &impl GenericImageView<Pixel = P>,
400 x: f32,
401 y: f32,
402) -> Option<P> {
403 assert!(P::CHANNEL_COUNT <= 4);
405
406 let (w, h) = img.dimensions();
407 if w == 0 || h == 0 {
408 return None;
409 }
410 if !(0.0..=((w - 1) as f32)).contains(&x) {
411 return None;
412 }
413 if !(0.0..=((h - 1) as f32)).contains(&y) {
414 return None;
415 }
416
417 let uf = x.floor() as u32;
419 let vf = y.floor() as u32;
420 let uc = (uf + 1).min(w - 1);
421 let vc = (vf + 1).min(h - 1);
422
423 let mut sxx = [[0.; 4]; 4];
425
426 let mut compute = |u: u32, v: u32, i| {
434 let s = img.get_pixel(u, v);
435 for (j, c) in s.channels().iter().enumerate() {
436 sxx[j][i] = c.to_f32().unwrap();
437 }
438 s
439 };
440
441 let mut out: P = compute(uf, vf, 0);
443 compute(uf, vc, 1);
444 compute(uc, vf, 2);
445 compute(uc, vc, 3);
446
447 let ufw = x - uf as f32;
449 let vfw = y - vf as f32;
450 let ucw = (uf + 1) as f32 - x;
451 let vcw = (vf + 1) as f32 - y;
452
453 let wff = ucw * vcw;
456 let wfc = ucw * vfw;
457 let wcf = ufw * vcw;
458 let wcc = ufw * vfw;
459 debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3);
461
462 let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0;
464
465 for (i, c) in out.channels_mut().iter_mut().enumerate() {
466 let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3];
467 *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({
471 if v < 0.0 {
472 P::Subpixel::DEFAULT_MIN_VALUE
473 } else {
474 P::Subpixel::DEFAULT_MAX_VALUE
475 }
476 });
477 }
478
479 Some(out)
480}
481
482fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage
491where
492 I: GenericImageView<Pixel = P>,
493 P: Pixel<Subpixel = S> + 'static,
494 S: Primitive + 'static,
495{
496 let (width, height) = image.dimensions();
497
498 assert!(
501 height != 0 || width == 0,
503 "Unexpected prior allocation size. This case should have been handled by the caller"
504 );
505
506 let mut out = ImageBuffer::new(width, new_height);
507 out.copy_color_space_from(&image.buffer_with_dimensions(0, 0));
508 let mut ws = Vec::new();
509
510 let ratio = height as f32 / new_height as f32;
511 let sratio = if ratio < 1.0 { 1.0 } else { ratio };
512 let src_support = filter.support * sratio;
513
514 for outy in 0..new_height {
515 let inputy = (outy as f32 + 0.5) * ratio;
518
519 let left = (inputy - src_support).floor() as i64;
520 let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32;
521
522 let right = (inputy + src_support).ceil() as i64;
523 let right = clamp(
524 right,
525 <i64 as From<_>>::from(left) + 1,
526 <i64 as From<_>>::from(height),
527 ) as u32;
528
529 let inputy = inputy - 0.5;
530
531 ws.clear();
532 let mut sum = 0.0;
533 for i in left..right {
534 let w = (filter.kernel)((i as f32 - inputy) / sratio);
535 ws.push(w);
536 sum += w;
537 }
538 for w in ws.iter_mut() {
539 *w /= sum;
540 }
541
542 for x in 0..width {
543 let mut t = (0.0, 0.0, 0.0, 0.0);
544
545 for (i, w) in ws.iter().enumerate() {
546 let p = image.get_pixel(x, left + i as u32);
547
548 #[allow(deprecated)]
549 let (k1, k2, k3, k4) = p.channels4();
550 let vec: (f32, f32, f32, f32) = (
551 NumCast::from(k1).unwrap(),
552 NumCast::from(k2).unwrap(),
553 NumCast::from(k3).unwrap(),
554 NumCast::from(k4).unwrap(),
555 );
556
557 t.0 += vec.0 * w;
558 t.1 += vec.1 * w;
559 t.2 += vec.2 * w;
560 t.3 += vec.3 * w;
561 }
562
563 #[allow(deprecated)]
564 let t = Pixel::from_channels(t.0, t.1, t.2, t.3);
566
567 out.put_pixel(x, outy, t);
568 }
569 }
570
571 out
572}
573
574struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger);
576
577impl<S: Primitive + Enlargeable> ThumbnailSum<S> {
578 fn zeroed() -> Self {
579 ThumbnailSum(
580 S::Larger::zero(),
581 S::Larger::zero(),
582 S::Larger::zero(),
583 S::Larger::zero(),
584 )
585 }
586
587 fn sample_val(val: S) -> S::Larger {
588 <S::Larger as NumCast>::from(val).unwrap()
589 }
590
591 fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) {
592 #[allow(deprecated)]
593 let pixel = pixel.channels4();
594 self.0 += Self::sample_val(pixel.0);
595 self.1 += Self::sample_val(pixel.1);
596 self.2 += Self::sample_val(pixel.2);
597 self.3 += Self::sample_val(pixel.3);
598 }
599}
600
601pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>>
614where
615 I: GenericImageView<Pixel = P>,
616 P: Pixel<Subpixel = S> + 'static,
617 S: Primitive + Enlargeable + 'static,
618{
619 let (width, height) = image.dimensions();
620 let mut out = image.buffer_with_dimensions(new_width, new_height);
621
622 if height == 0 || width == 0 {
623 return out;
624 }
625
626 let x_ratio = width as f32 / new_width as f32;
627 let y_ratio = height as f32 / new_height as f32;
628
629 for outy in 0..new_height {
630 let bottomf = outy as f32 * y_ratio;
631 let topf = bottomf + y_ratio;
632
633 let bottom = clamp(bottomf.ceil() as u32, 0, height - 1);
634 let top = clamp(topf.ceil() as u32, bottom, height);
635
636 for outx in 0..new_width {
637 let leftf = outx as f32 * x_ratio;
638 let rightf = leftf + x_ratio;
639
640 let left = clamp(leftf.ceil() as u32, 0, width - 1);
641 let right = clamp(rightf.ceil() as u32, left, width);
642
643 let avg = if bottom != top && left != right {
644 thumbnail_sample_block(image, left, right, bottom, top)
645 } else if bottom != top {
646 debug_assert!(
650 left > 0 && right > 0,
651 "First output column must have corresponding pixels"
652 );
653
654 let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.;
655 thumbnail_sample_fraction_horizontal(
656 image,
657 right - 1,
658 fraction_horizontal,
659 bottom,
660 top,
661 )
662 } else if left != right {
663 debug_assert!(
667 bottom > 0 && top > 0,
668 "First output row must have corresponding pixels"
669 );
670
671 let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.;
672 thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical)
673 } else {
674 let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.;
676 let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.;
677
678 thumbnail_sample_fraction_both(
679 image,
680 right - 1,
681 fraction_horizontal,
682 top - 1,
683 fraction_vertical,
684 )
685 };
686
687 #[allow(deprecated)]
688 let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3);
689 out.put_pixel(outx, outy, pixel);
690 }
691 }
692
693 out
694}
695
696fn thumbnail_sample_block<I, P, S>(
698 image: &I,
699 left: u32,
700 right: u32,
701 bottom: u32,
702 top: u32,
703) -> (S, S, S, S)
704where
705 I: GenericImageView<Pixel = P>,
706 P: Pixel<Subpixel = S>,
707 S: Primitive + Enlargeable,
708{
709 let mut sum = ThumbnailSum::zeroed();
710
711 for y in bottom..top {
712 for x in left..right {
713 let k = image.get_pixel(x, y);
714 sum.add_pixel(k);
715 }
716 }
717
718 let n = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap();
719 let round = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap();
720 (
721 S::clamp_from((sum.0 + round) / n),
722 S::clamp_from((sum.1 + round) / n),
723 S::clamp_from((sum.2 + round) / n),
724 S::clamp_from((sum.3 + round) / n),
725 )
726}
727
728fn thumbnail_sample_fraction_horizontal<I, P, S>(
730 image: &I,
731 left: u32,
732 fraction_horizontal: f32,
733 bottom: u32,
734 top: u32,
735) -> (S, S, S, S)
736where
737 I: GenericImageView<Pixel = P>,
738 P: Pixel<Subpixel = S>,
739 S: Primitive + Enlargeable,
740{
741 let fract = fraction_horizontal;
742
743 let mut sum_left = ThumbnailSum::zeroed();
744 let mut sum_right = ThumbnailSum::zeroed();
745 for x in bottom..top {
746 let k_left = image.get_pixel(left, x);
747 sum_left.add_pixel(k_left);
748
749 let k_right = image.get_pixel(left + 1, x);
750 sum_right.add_pixel(k_right);
751 }
752
753 let fact_right = fract / ((top - bottom) as f32);
755 let fact_left = (1. - fract) / ((top - bottom) as f32);
756
757 let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| {
758 <S as NumCast>::from(
759 fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(),
760 )
761 .expect("Average sample value should fit into sample type")
762 };
763
764 (
765 mix_left_and_right(sum_left.0, sum_right.0),
766 mix_left_and_right(sum_left.1, sum_right.1),
767 mix_left_and_right(sum_left.2, sum_right.2),
768 mix_left_and_right(sum_left.3, sum_right.3),
769 )
770}
771
772fn thumbnail_sample_fraction_vertical<I, P, S>(
774 image: &I,
775 left: u32,
776 right: u32,
777 bottom: u32,
778 fraction_vertical: f32,
779) -> (S, S, S, S)
780where
781 I: GenericImageView<Pixel = P>,
782 P: Pixel<Subpixel = S>,
783 S: Primitive + Enlargeable,
784{
785 let fract = fraction_vertical;
786
787 let mut sum_bot = ThumbnailSum::zeroed();
788 let mut sum_top = ThumbnailSum::zeroed();
789 for x in left..right {
790 let k_bot = image.get_pixel(x, bottom);
791 sum_bot.add_pixel(k_bot);
792
793 let k_top = image.get_pixel(x, bottom + 1);
794 sum_top.add_pixel(k_top);
795 }
796
797 let fact_top = fract / ((right - left) as f32);
799 let fact_bot = (1. - fract) / ((right - left) as f32);
800
801 let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| {
802 <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap())
803 .expect("Average sample value should fit into sample type")
804 };
805
806 (
807 mix_bot_and_top(sum_bot.0, sum_top.0),
808 mix_bot_and_top(sum_bot.1, sum_top.1),
809 mix_bot_and_top(sum_bot.2, sum_top.2),
810 mix_bot_and_top(sum_bot.3, sum_top.3),
811 )
812}
813
814fn thumbnail_sample_fraction_both<I, P, S>(
816 image: &I,
817 left: u32,
818 fraction_vertical: f32,
819 bottom: u32,
820 fraction_horizontal: f32,
821) -> (S, S, S, S)
822where
823 I: GenericImageView<Pixel = P>,
824 P: Pixel<Subpixel = S>,
825 S: Primitive + Enlargeable,
826{
827 #[allow(deprecated)]
828 let k_bl = image.get_pixel(left, bottom).channels4();
829 #[allow(deprecated)]
830 let k_tl = image.get_pixel(left, bottom + 1).channels4();
831 #[allow(deprecated)]
832 let k_br = image.get_pixel(left + 1, bottom).channels4();
833 #[allow(deprecated)]
834 let k_tr = image.get_pixel(left + 1, bottom + 1).channels4();
835
836 let frac_v = fraction_vertical;
837 let frac_h = fraction_horizontal;
838
839 let fact_tr = frac_v * frac_h;
840 let fact_tl = frac_v * (1. - frac_h);
841 let fact_br = (1. - frac_v) * frac_h;
842 let fact_bl = (1. - frac_v) * (1. - frac_h);
843
844 let mix = |br: S, tr: S, bl: S, tl: S| {
845 <S as NumCast>::from(
846 fact_br * br.to_f32().unwrap()
847 + fact_tr * tr.to_f32().unwrap()
848 + fact_bl * bl.to_f32().unwrap()
849 + fact_tl * tl.to_f32().unwrap(),
850 )
851 .expect("Average sample value should fit into sample type")
852 };
853
854 (
855 mix(k_br.0, k_tr.0, k_bl.0, k_tl.0),
856 mix(k_br.1, k_tr.1, k_bl.1, k_tl.1),
857 mix(k_br.2, k_tr.2, k_bl.2, k_tl.2),
858 mix(k_br.3, k_tr.3, k_bl.3, k_tl.3),
859 )
860}
861
862pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>>
872where
873 I: GenericImageView<Pixel = P>,
874 P: Pixel<Subpixel = S> + 'static,
875 S: Primitive + 'static,
876{
877 let taps: &[(isize, isize)] = &[
879 (-1, -1),
880 (0, -1),
881 (1, -1),
882 (-1, 0),
883 (0, 0),
884 (1, 0),
885 (-1, 1),
886 (0, 1),
887 (1, 1),
888 ];
889
890 let (width, height) = image.dimensions();
891 let mut out = image.buffer_like();
892
893 let max = S::DEFAULT_MAX_VALUE;
894 let max: f32 = NumCast::from(max).unwrap();
895
896 let inverse_sum = match kernel.iter().sum() {
897 0.0 => 1.0,
898 sum => 1.0 / sum,
899 };
900
901 for y in 1..height - 1 {
902 for x in 1..width - 1 {
903 let mut t = (0.0, 0.0, 0.0, 0.0);
904
905 for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) {
909 let x0 = x as isize + a;
910 let y0 = y as isize + b;
911
912 let p = image.get_pixel(x0 as u32, y0 as u32);
913
914 #[allow(deprecated)]
915 let (k1, k2, k3, k4) = p.channels4();
916
917 let vec: (f32, f32, f32, f32) = (
918 NumCast::from(k1).unwrap(),
919 NumCast::from(k2).unwrap(),
920 NumCast::from(k3).unwrap(),
921 NumCast::from(k4).unwrap(),
922 );
923
924 t.0 += vec.0 * k;
925 t.1 += vec.1 * k;
926 t.2 += vec.2 * k;
927 t.3 += vec.3 * k;
928 }
929
930 let (t1, t2, t3, t4) = (
931 t.0 * inverse_sum,
932 t.1 * inverse_sum,
933 t.2 * inverse_sum,
934 t.3 * inverse_sum,
935 );
936
937 #[allow(deprecated)]
938 let t = Pixel::from_channels(
939 NumCast::from(clamp(t1, 0.0, max)).unwrap(),
940 NumCast::from(clamp(t2, 0.0, max)).unwrap(),
941 NumCast::from(clamp(t3, 0.0, max)).unwrap(),
942 NumCast::from(clamp(t4, 0.0, max)).unwrap(),
943 );
944
945 out.put_pixel(x, y, t);
946 }
947 }
948
949 out
950}
951
952pub fn resize<I: GenericImageView>(
965 image: &I,
966 nwidth: u32,
967 nheight: u32,
968 filter: FilterType,
969) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
970where
971 I::Pixel: 'static,
972 <I::Pixel as Pixel>::Subpixel: 'static,
973{
974 let is_empty = {
976 let (width, height) = image.dimensions();
977 width == 0 || height == 0
978 };
979
980 if is_empty {
981 return image.buffer_with_dimensions(nwidth, nheight);
982 }
983
984 if (nwidth, nheight) == image.dimensions() {
986 let mut tmp = image.buffer_like();
987 tmp.copy_from(image, 0, 0).unwrap();
988 return tmp;
989 }
990
991 let mut method = match filter {
992 FilterType::Nearest => Filter {
993 kernel: Box::new(box_kernel),
994 support: 0.0,
995 },
996 FilterType::Triangle => Filter {
997 kernel: Box::new(triangle_kernel),
998 support: 1.0,
999 },
1000 FilterType::CatmullRom => Filter {
1001 kernel: Box::new(catmullrom_kernel),
1002 support: 2.0,
1003 },
1004 FilterType::Gaussian => Filter {
1005 kernel: Box::new(gaussian_kernel),
1006 support: 3.0,
1007 },
1008 FilterType::Lanczos3 => Filter {
1009 kernel: Box::new(lanczos3_kernel),
1010 support: 3.0,
1011 },
1012 };
1013
1014 let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method);
1016 horizontal_sample(&tmp, nwidth, &mut method)
1017}
1018
1019pub fn blur<I: GenericImageView>(
1031 image: &I,
1032 sigma: f32,
1033) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
1034where
1035 I::Pixel: 'static,
1036{
1037 gaussian_blur_indirect(
1038 image,
1039 GaussianBlurParameters::new_from_sigma(if sigma == 0.0 { 0.8 } else { sigma }),
1040 )
1041}
1042
1043pub fn blur_advanced<I: GenericImageView>(
1053 image: &I,
1054 parameters: GaussianBlurParameters,
1055) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
1056where
1057 I::Pixel: 'static,
1058{
1059 gaussian_blur_indirect(image, parameters)
1060}
1061
1062fn get_gaussian_kernel_1d(width: usize, sigma: f32) -> Vec<f32> {
1063 let mut sum_norm: f32 = 0f32;
1064 let mut kernel = vec![0f32; width];
1065 let scale = 1f32 / (f32::sqrt(2f32 * f32::consts::PI) * sigma);
1066 let mean = (width / 2) as f32;
1067
1068 for (x, weight) in kernel.iter_mut().enumerate() {
1069 let new_weight = f32::exp(-0.5f32 * f32::powf((x as f32 - mean) / sigma, 2.0f32)) * scale;
1070 *weight = new_weight;
1071 sum_norm += new_weight;
1072 }
1073
1074 if sum_norm != 0f32 {
1075 let sum_scale = 1f32 / sum_norm;
1076 for weight in &mut kernel {
1077 *weight = weight.mul(sum_scale);
1078 }
1079 }
1080
1081 kernel
1082}
1083
1084#[derive(Copy, Clone, PartialOrd, PartialEq)]
1086pub struct GaussianBlurParameters {
1087 x_axis_kernel_size: u32,
1089 x_axis_sigma: f32,
1091 y_axis_kernel_size: u32,
1093 y_axis_sigma: f32,
1095}
1096
1097impl GaussianBlurParameters {
1098 pub const SMOOTHING_3: GaussianBlurParameters = GaussianBlurParameters {
1100 x_axis_kernel_size: 3,
1101 x_axis_sigma: 0.8,
1102 y_axis_kernel_size: 3,
1103 y_axis_sigma: 0.8,
1104 };
1105
1106 pub const SMOOTHING_5: GaussianBlurParameters = GaussianBlurParameters {
1108 x_axis_kernel_size: 5,
1109 x_axis_sigma: 1.1,
1110 y_axis_kernel_size: 5,
1111 y_axis_sigma: 1.1,
1112 };
1113
1114 pub const SMOOTHING_7: GaussianBlurParameters = GaussianBlurParameters {
1116 x_axis_kernel_size: 7,
1117 x_axis_sigma: 1.4,
1118 y_axis_kernel_size: 7,
1119 y_axis_sigma: 1.4,
1120 };
1121
1122 pub fn new_from_radius(radius: f32) -> GaussianBlurParameters {
1124 assert!(radius >= 0.0);
1126 if radius != 0. {
1127 assert!(
1128 radius.is_normal(),
1129 "Radius do not allow infinities, NaNs or subnormals"
1130 );
1131 }
1132 GaussianBlurParameters::new_from_kernel_size(radius * 2. + 1.)
1133 }
1134
1135 pub fn new_from_kernel_size(kernel_size: f32) -> GaussianBlurParameters {
1140 assert!(
1141 kernel_size > 0.,
1142 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1143 );
1144 assert!(
1145 kernel_size.is_normal(),
1146 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1147 );
1148 let i_kernel_size = GaussianBlurParameters::round_to_nearest_odd(kernel_size);
1149 assert_ne!(i_kernel_size % 2, 0, "Kernel size must be odd");
1150 let v_sigma = GaussianBlurParameters::sigma_size(kernel_size);
1151 GaussianBlurParameters {
1152 x_axis_kernel_size: i_kernel_size,
1153 x_axis_sigma: v_sigma,
1154 y_axis_kernel_size: i_kernel_size,
1155 y_axis_sigma: v_sigma,
1156 }
1157 }
1158
1159 pub fn new_anisotropic_kernel_size(
1164 x_axis_kernel_size: f32,
1165 y_axis_kernel_size: f32,
1166 ) -> GaussianBlurParameters {
1167 assert!(
1168 x_axis_kernel_size > 0.,
1169 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1170 );
1171 assert!(
1172 y_axis_kernel_size.is_normal(),
1173 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1174 );
1175 assert!(
1176 y_axis_kernel_size > 0.,
1177 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1178 );
1179 assert!(
1180 y_axis_kernel_size.is_normal(),
1181 "Kernel size do not allow infinities, zeros, NaNs or subnormals or negatives"
1182 );
1183 let x_kernel_size = GaussianBlurParameters::round_to_nearest_odd(x_axis_kernel_size);
1184 assert_ne!(x_kernel_size % 2, 0, "Kernel size must be odd");
1185 let y_kernel_size = GaussianBlurParameters::round_to_nearest_odd(y_axis_kernel_size);
1186 assert_ne!(y_kernel_size % 2, 0, "Kernel size must be odd");
1187 let x_sigma = GaussianBlurParameters::sigma_size(x_axis_kernel_size);
1188 let y_sigma = GaussianBlurParameters::sigma_size(y_axis_kernel_size);
1189 GaussianBlurParameters {
1190 x_axis_kernel_size: x_kernel_size,
1191 x_axis_sigma: x_sigma,
1192 y_axis_kernel_size: y_kernel_size,
1193 y_axis_sigma: y_sigma,
1194 }
1195 }
1196
1197 pub fn new_from_sigma(sigma: f32) -> GaussianBlurParameters {
1199 assert!(
1200 sigma.is_normal(),
1201 "Sigma cannot be NaN, Infinities, subnormal or zero"
1202 );
1203 assert!(sigma > 0.0, "Sigma must be positive");
1204 let kernel_size = GaussianBlurParameters::kernel_size_from_sigma(sigma);
1205 GaussianBlurParameters {
1206 x_axis_kernel_size: kernel_size,
1207 x_axis_sigma: sigma,
1208 y_axis_kernel_size: kernel_size,
1209 y_axis_sigma: sigma,
1210 }
1211 }
1212
1213 #[inline]
1214 fn round_to_nearest_odd(x: f32) -> u32 {
1215 let n = x.round() as u32;
1216 if n % 2 != 0 {
1217 n
1218 } else {
1219 let lower = n - 1;
1220 let upper = n + 1;
1221
1222 let dist_lower = (x - lower as f32).abs();
1223 let dist_upper = (x - upper as f32).abs();
1224
1225 if dist_lower <= dist_upper {
1226 lower
1227 } else {
1228 upper
1229 }
1230 }
1231 }
1232
1233 fn sigma_size(kernel_size: f32) -> f32 {
1234 let safe_kernel_size = if kernel_size <= 1. { 0.8 } else { kernel_size };
1235 0.3 * ((safe_kernel_size - 1.) * 0.5 - 1.) + 0.8
1236 }
1237
1238 fn kernel_size_from_sigma(sigma: f32) -> u32 {
1239 let possible_size = (((((sigma - 0.8) / 0.3) + 1.) * 2.) + 1.).max(3.) as u32;
1240 if possible_size % 2 == 0 {
1241 return possible_size + 1;
1242 }
1243 possible_size
1244 }
1245}
1246
1247pub(crate) fn gaussian_blur_dyn_image(
1248 image: &DynamicImage,
1249 parameters: GaussianBlurParameters,
1250) -> DynamicImage {
1251 let x_axis_kernel = get_gaussian_kernel_1d(
1252 parameters.x_axis_kernel_size as usize,
1253 parameters.x_axis_sigma,
1254 );
1255
1256 let y_axis_kernel = get_gaussian_kernel_1d(
1257 parameters.y_axis_kernel_size as usize,
1258 parameters.y_axis_sigma,
1259 );
1260
1261 let filter_image_size = FilterImageSize {
1262 width: image.width() as usize,
1263 height: image.height() as usize,
1264 };
1265
1266 let mut target = match image {
1267 DynamicImage::ImageLuma8(img) => {
1268 let mut dest_image = vec![0u8; img.len()];
1269 filter_2d_sep_plane(
1270 img.as_raw(),
1271 &mut dest_image,
1272 filter_image_size,
1273 &x_axis_kernel,
1274 &y_axis_kernel,
1275 )
1276 .unwrap();
1277 DynamicImage::ImageLuma8(
1278 GrayImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1279 )
1280 }
1281 DynamicImage::ImageLumaA8(img) => {
1282 let mut dest_image = vec![0u8; img.len()];
1283 filter_2d_sep_la(
1284 img.as_raw(),
1285 &mut dest_image,
1286 filter_image_size,
1287 &x_axis_kernel,
1288 &y_axis_kernel,
1289 )
1290 .unwrap();
1291 DynamicImage::ImageLumaA8(
1292 GrayAlphaImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1293 )
1294 }
1295 DynamicImage::ImageRgb8(img) => {
1296 let mut dest_image = vec![0u8; img.len()];
1297 filter_2d_sep_rgb(
1298 img.as_raw(),
1299 &mut dest_image,
1300 filter_image_size,
1301 &x_axis_kernel,
1302 &y_axis_kernel,
1303 )
1304 .unwrap();
1305 DynamicImage::ImageRgb8(
1306 RgbImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1307 )
1308 }
1309 DynamicImage::ImageRgba8(img) => {
1310 let mut dest_image = vec![0u8; img.len()];
1311 filter_2d_sep_rgba(
1312 img.as_raw(),
1313 &mut dest_image,
1314 filter_image_size,
1315 &x_axis_kernel,
1316 &y_axis_kernel,
1317 )
1318 .unwrap();
1319 DynamicImage::ImageRgba8(
1320 RgbaImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1321 )
1322 }
1323 DynamicImage::ImageLuma16(img) => {
1324 let mut dest_image = vec![0u16; img.len()];
1325 filter_2d_sep_plane_u16(
1326 img.as_raw(),
1327 &mut dest_image,
1328 filter_image_size,
1329 &x_axis_kernel,
1330 &y_axis_kernel,
1331 )
1332 .unwrap();
1333 DynamicImage::ImageLuma16(
1334 Gray16Image::from_raw(img.width(), img.height(), dest_image).unwrap(),
1335 )
1336 }
1337 DynamicImage::ImageLumaA16(img) => {
1338 let mut dest_image = vec![0u16; img.len()];
1339 filter_2d_sep_la_u16(
1340 img.as_raw(),
1341 &mut dest_image,
1342 filter_image_size,
1343 &x_axis_kernel,
1344 &y_axis_kernel,
1345 )
1346 .unwrap();
1347 DynamicImage::ImageLumaA16(
1348 GrayAlpha16Image::from_raw(img.width(), img.height(), dest_image).unwrap(),
1349 )
1350 }
1351 DynamicImage::ImageRgb16(img) => {
1352 let mut dest_image = vec![0u16; img.len()];
1353 filter_2d_sep_rgb_u16(
1354 img.as_raw(),
1355 &mut dest_image,
1356 filter_image_size,
1357 &x_axis_kernel,
1358 &y_axis_kernel,
1359 )
1360 .unwrap();
1361 DynamicImage::ImageRgb16(
1362 Rgb16Image::from_raw(img.width(), img.height(), dest_image).unwrap(),
1363 )
1364 }
1365 DynamicImage::ImageRgba16(img) => {
1366 let mut dest_image = vec![0u16; img.len()];
1367 filter_2d_sep_rgba_u16(
1368 img.as_raw(),
1369 &mut dest_image,
1370 filter_image_size,
1371 &x_axis_kernel,
1372 &y_axis_kernel,
1373 )
1374 .unwrap();
1375 DynamicImage::ImageRgba16(
1376 Rgba16Image::from_raw(img.width(), img.height(), dest_image).unwrap(),
1377 )
1378 }
1379 DynamicImage::ImageRgb32F(img) => {
1380 let mut dest_image = vec![0f32; img.len()];
1381 filter_2d_sep_rgb_f32(
1382 img.as_raw(),
1383 &mut dest_image,
1384 filter_image_size,
1385 &x_axis_kernel,
1386 &y_axis_kernel,
1387 )
1388 .unwrap();
1389 DynamicImage::ImageRgb32F(
1390 Rgb32FImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1391 )
1392 }
1393 DynamicImage::ImageRgba32F(img) => {
1394 let mut dest_image = vec![0f32; img.len()];
1395 filter_2d_sep_rgba_f32(
1396 img.as_raw(),
1397 &mut dest_image,
1398 filter_image_size,
1399 &x_axis_kernel,
1400 &y_axis_kernel,
1401 )
1402 .unwrap();
1403 DynamicImage::ImageRgba32F(
1404 Rgba32FImage::from_raw(img.width(), img.height(), dest_image).unwrap(),
1405 )
1406 }
1407 };
1408
1409 let _ = target.set_color_space(image.color_space());
1411 target
1412}
1413
1414fn gaussian_blur_indirect<I: GenericImageView>(
1415 image: &I,
1416 parameters: GaussianBlurParameters,
1417) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
1418where
1419 I::Pixel: 'static,
1420{
1421 match I::Pixel::CHANNEL_COUNT {
1422 1 => gaussian_blur_indirect_impl::<I, 1>(image, parameters),
1423 2 => gaussian_blur_indirect_impl::<I, 2>(image, parameters),
1424 3 => gaussian_blur_indirect_impl::<I, 3>(image, parameters),
1425 4 => gaussian_blur_indirect_impl::<I, 4>(image, parameters),
1426 _ => unimplemented!(),
1427 }
1428}
1429
1430fn gaussian_blur_indirect_impl<I: GenericImageView, const CN: usize>(
1431 image: &I,
1432 parameters: GaussianBlurParameters,
1433) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
1434where
1435 I::Pixel: 'static,
1436{
1437 let mut transient = vec![0f32; image.width() as usize * image.height() as usize * CN];
1438 for (pixel, dst) in image.pixels().zip(transient.chunks_exact_mut(CN)) {
1439 let px = pixel.2.channels();
1440 match CN {
1441 1 => {
1442 dst[0] = NumCast::from(px[0]).unwrap();
1443 }
1444 2 => {
1445 dst[0] = NumCast::from(px[0]).unwrap();
1446 dst[1] = NumCast::from(px[1]).unwrap();
1447 }
1448 3 => {
1449 dst[0] = NumCast::from(px[0]).unwrap();
1450 dst[1] = NumCast::from(px[1]).unwrap();
1451 dst[2] = NumCast::from(px[2]).unwrap();
1452 }
1453 4 => {
1454 dst[0] = NumCast::from(px[0]).unwrap();
1455 dst[1] = NumCast::from(px[1]).unwrap();
1456 dst[2] = NumCast::from(px[2]).unwrap();
1457 dst[3] = NumCast::from(px[3]).unwrap();
1458 }
1459 _ => unreachable!(),
1460 }
1461 }
1462
1463 let mut transient_dst = vec![0.; image.width() as usize * image.height() as usize * CN];
1464
1465 let x_axis_kernel = get_gaussian_kernel_1d(
1466 parameters.x_axis_kernel_size as usize,
1467 parameters.x_axis_sigma,
1468 );
1469 let y_axis_kernel = get_gaussian_kernel_1d(
1470 parameters.y_axis_kernel_size as usize,
1471 parameters.y_axis_sigma,
1472 );
1473
1474 let filter_image_size = FilterImageSize {
1475 width: image.width() as usize,
1476 height: image.height() as usize,
1477 };
1478
1479 match CN {
1480 1 => {
1481 filter_2d_sep_plane_f32(
1482 &transient,
1483 &mut transient_dst,
1484 filter_image_size,
1485 &x_axis_kernel,
1486 &y_axis_kernel,
1487 )
1488 .unwrap();
1489 }
1490 2 => {
1491 filter_2d_sep_la_f32(
1492 &transient,
1493 &mut transient_dst,
1494 filter_image_size,
1495 &x_axis_kernel,
1496 &y_axis_kernel,
1497 )
1498 .unwrap();
1499 }
1500 3 => {
1501 filter_2d_sep_rgb_f32(
1502 &transient,
1503 &mut transient_dst,
1504 filter_image_size,
1505 &x_axis_kernel,
1506 &y_axis_kernel,
1507 )
1508 .unwrap();
1509 }
1510 4 => {
1511 filter_2d_sep_rgba_f32(
1512 &transient,
1513 &mut transient_dst,
1514 filter_image_size,
1515 &x_axis_kernel,
1516 &y_axis_kernel,
1517 )
1518 .unwrap();
1519 }
1520 _ => unreachable!(),
1521 }
1522
1523 let mut out = image.buffer_like();
1524 for (dst, src) in out.pixels_mut().zip(transient_dst.chunks_exact_mut(CN)) {
1525 match CN {
1526 1 => {
1527 let v0 = NumCast::from(FloatNearest(src[0])).unwrap();
1528 #[allow(deprecated)]
1529 let t = Pixel::from_channels(v0, v0, v0, v0);
1530 *dst = t;
1531 }
1532 2 => {
1533 let v0 = NumCast::from(FloatNearest(src[0])).unwrap();
1534 let v1 = NumCast::from(FloatNearest(src[1])).unwrap();
1535 #[allow(deprecated)]
1536 let t = Pixel::from_channels(v0, v1, v0, v0);
1537 *dst = t;
1538 }
1539 3 => {
1540 let v0 = NumCast::from(FloatNearest(src[0])).unwrap();
1541 let v1 = NumCast::from(FloatNearest(src[1])).unwrap();
1542 let v2 = NumCast::from(FloatNearest(src[2])).unwrap();
1543 #[allow(deprecated)]
1544 let t = Pixel::from_channels(v0, v1, v2, v0);
1545 *dst = t;
1546 }
1547 4 => {
1548 let v0 = NumCast::from(FloatNearest(src[0])).unwrap();
1549 let v1 = NumCast::from(FloatNearest(src[1])).unwrap();
1550 let v2 = NumCast::from(FloatNearest(src[2])).unwrap();
1551 let v3 = NumCast::from(FloatNearest(src[3])).unwrap();
1552 #[allow(deprecated)]
1553 let t = Pixel::from_channels(v0, v1, v2, v3);
1554 *dst = t;
1555 }
1556 _ => unreachable!(),
1557 }
1558 }
1559
1560 out
1561}
1562
1563pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>>
1575where
1576 I: GenericImageView<Pixel = P>,
1577 P: Pixel<Subpixel = S> + 'static,
1578 S: Primitive + 'static,
1579{
1580 let mut tmp = blur_advanced(image, GaussianBlurParameters::new_from_sigma(sigma));
1581
1582 let max = S::DEFAULT_MAX_VALUE;
1583 let max: i32 = NumCast::from(max).unwrap();
1584 let (width, height) = image.dimensions();
1585
1586 for y in 0..height {
1587 for x in 0..width {
1588 let a = image.get_pixel(x, y);
1589 let b = tmp.get_pixel_mut(x, y);
1590
1591 let p = a.map2(b, |c, d| {
1592 let ic: i32 = NumCast::from(c).unwrap();
1593 let id: i32 = NumCast::from(d).unwrap();
1594
1595 let diff = ic - id;
1596
1597 if diff.abs() > threshold {
1598 let e = clamp(ic + diff, 0, max); NumCast::from(e).unwrap()
1601 } else {
1602 c
1603 }
1604 });
1605
1606 *b = p;
1607 }
1608 }
1609
1610 tmp
1611}
1612
1613#[cfg(test)]
1614mod tests {
1615 use super::{resize, sample_bilinear, sample_nearest, FilterType};
1616 use crate::{GenericImageView, ImageBuffer, RgbImage};
1617 #[cfg(feature = "benchmarks")]
1618 use test;
1619
1620 #[bench]
1621 #[cfg(all(feature = "benchmarks", feature = "png"))]
1622 fn bench_resize(b: &mut test::Bencher) {
1623 use std::path::Path;
1624 let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1625 b.iter(|| {
1626 test::black_box(resize(&img, 200, 200, FilterType::Nearest));
1627 });
1628 b.bytes = 800 * 800 * 3 + 200 * 200 * 3;
1629 }
1630
1631 #[test]
1632 #[cfg(feature = "png")]
1633 fn test_resize_same_size() {
1634 use std::path::Path;
1635 let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1636 let resize = img.resize(img.width(), img.height(), FilterType::Triangle);
1637 assert!(img.pixels().eq(resize.pixels()));
1638 }
1639
1640 #[test]
1641 #[cfg(feature = "png")]
1642 fn test_sample_bilinear() {
1643 use std::path::Path;
1644 let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1645 assert!(sample_bilinear(&img, 0., 0.).is_some());
1646 assert!(sample_bilinear(&img, 1., 0.).is_some());
1647 assert!(sample_bilinear(&img, 0., 1.).is_some());
1648 assert!(sample_bilinear(&img, 1., 1.).is_some());
1649 assert!(sample_bilinear(&img, 0.5, 0.5).is_some());
1650
1651 assert!(sample_bilinear(&img, 1.2, 0.5).is_none());
1652 assert!(sample_bilinear(&img, 0.5, 1.2).is_none());
1653 assert!(sample_bilinear(&img, 1.2, 1.2).is_none());
1654
1655 assert!(sample_bilinear(&img, -0.1, 0.2).is_none());
1656 assert!(sample_bilinear(&img, 0.2, -0.1).is_none());
1657 assert!(sample_bilinear(&img, -0.1, -0.1).is_none());
1658 }
1659 #[test]
1660 #[cfg(feature = "png")]
1661 fn test_sample_nearest() {
1662 use std::path::Path;
1663 let img = crate::open(Path::new("./examples/fractal.png")).unwrap();
1664 assert!(sample_nearest(&img, 0., 0.).is_some());
1665 assert!(sample_nearest(&img, 1., 0.).is_some());
1666 assert!(sample_nearest(&img, 0., 1.).is_some());
1667 assert!(sample_nearest(&img, 1., 1.).is_some());
1668 assert!(sample_nearest(&img, 0.5, 0.5).is_some());
1669
1670 assert!(sample_nearest(&img, 1.2, 0.5).is_none());
1671 assert!(sample_nearest(&img, 0.5, 1.2).is_none());
1672 assert!(sample_nearest(&img, 1.2, 1.2).is_none());
1673
1674 assert!(sample_nearest(&img, -0.1, 0.2).is_none());
1675 assert!(sample_nearest(&img, 0.2, -0.1).is_none());
1676 assert!(sample_nearest(&img, -0.1, -0.1).is_none());
1677 }
1678 #[test]
1679 fn test_sample_bilinear_correctness() {
1680 use crate::Rgba;
1681 let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1682 (0, 0) => Rgba([255, 0, 0, 0]),
1683 (0, 1) => Rgba([0, 255, 0, 0]),
1684 (1, 0) => Rgba([0, 0, 255, 0]),
1685 (1, 1) => Rgba([0, 0, 0, 255]),
1686 _ => panic!(),
1687 });
1688 assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4])));
1689 assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1690 assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1691 assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1692 assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1693
1694 assert_eq!(
1695 sample_bilinear(&img, 0.5, 0.0),
1696 Some(Rgba([128, 0, 128, 0]))
1697 );
1698 assert_eq!(
1699 sample_bilinear(&img, 0.0, 0.5),
1700 Some(Rgba([128, 128, 0, 0]))
1701 );
1702 assert_eq!(
1703 sample_bilinear(&img, 0.5, 1.0),
1704 Some(Rgba([0, 128, 0, 128]))
1705 );
1706 assert_eq!(
1707 sample_bilinear(&img, 1.0, 0.5),
1708 Some(Rgba([0, 0, 128, 128]))
1709 );
1710 }
1711 #[bench]
1712 #[cfg(feature = "benchmarks")]
1713 fn bench_sample_bilinear(b: &mut test::Bencher) {
1714 use crate::Rgba;
1715 let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1716 (0, 0) => Rgba([255, 0, 0, 0]),
1717 (0, 1) => Rgba([0, 255, 0, 0]),
1718 (1, 0) => Rgba([0, 0, 255, 0]),
1719 (1, 1) => Rgba([0, 0, 0, 255]),
1720 _ => panic!(),
1721 });
1722 b.iter(|| {
1723 sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5));
1724 });
1725 }
1726 #[test]
1727 fn test_sample_nearest_correctness() {
1728 use crate::Rgba;
1729 let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) {
1730 (0, 0) => Rgba([255, 0, 0, 0]),
1731 (0, 1) => Rgba([0, 255, 0, 0]),
1732 (1, 0) => Rgba([0, 0, 255, 0]),
1733 (1, 1) => Rgba([0, 0, 0, 255]),
1734 _ => panic!(),
1735 });
1736
1737 assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0])));
1738 assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0])));
1739 assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0])));
1740 assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255])));
1741
1742 assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255])));
1743 assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0])));
1744 assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0])));
1745 assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255])));
1746 assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255])));
1747 }
1748
1749 #[bench]
1750 #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1751 fn bench_resize_same_size(b: &mut test::Bencher) {
1752 let path = concat!(
1753 env!("CARGO_MANIFEST_DIR"),
1754 "/tests/images/tiff/testsuite/mandrill.tiff"
1755 );
1756 let image = crate::open(path).unwrap();
1757 b.iter(|| {
1758 test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom));
1759 });
1760 b.bytes = u64::from(image.width() * image.height() * 3);
1761 }
1762
1763 #[test]
1764 fn test_issue_186() {
1765 let img: RgbImage = ImageBuffer::new(100, 100);
1766 let _ = resize(&img, 50, 50, FilterType::Lanczos3);
1767 }
1768
1769 #[bench]
1770 #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1771 fn bench_thumbnail(b: &mut test::Bencher) {
1772 let path = concat!(
1773 env!("CARGO_MANIFEST_DIR"),
1774 "/tests/images/tiff/testsuite/mandrill.tiff"
1775 );
1776 let image = crate::open(path).unwrap();
1777 b.iter(|| {
1778 test::black_box(image.thumbnail(256, 256));
1779 });
1780 b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1781 }
1782
1783 #[bench]
1784 #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1785 fn bench_thumbnail_upsize(b: &mut test::Bencher) {
1786 let path = concat!(
1787 env!("CARGO_MANIFEST_DIR"),
1788 "/tests/images/tiff/testsuite/mandrill.tiff"
1789 );
1790 let image = crate::open(path).unwrap().thumbnail(256, 256);
1791 b.iter(|| {
1792 test::black_box(image.thumbnail(512, 512));
1793 });
1794 b.bytes = 512 * 512 * 4 + 256 * 256 * 4;
1795 }
1796
1797 #[bench]
1798 #[cfg(all(feature = "benchmarks", feature = "tiff"))]
1799 fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) {
1800 let path = concat!(
1801 env!("CARGO_MANIFEST_DIR"),
1802 "/tests/images/tiff/testsuite/mandrill.tiff"
1803 );
1804 let image = crate::open(path).unwrap().thumbnail(193, 193);
1805 b.iter(|| {
1806 test::black_box(image.thumbnail(256, 256));
1807 });
1808 b.bytes = 193 * 193 * 4 + 256 * 256 * 4;
1809 }
1810
1811 #[test]
1812 #[cfg(feature = "png")]
1813 fn resize_transparent_image() {
1814 use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle};
1815 use crate::imageops::crop_imm;
1816 use crate::RgbaImage;
1817
1818 fn assert_resize(image: &RgbaImage, filter: FilterType) {
1819 let resized = resize(image, 16, 16, filter);
1820 let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image();
1821 for pixel in cropped.pixels() {
1822 let alpha = pixel.0[3];
1823 assert!(
1824 alpha != 254 && alpha != 253,
1825 "alpha value: {alpha}, {filter:?}"
1826 );
1827 }
1828 }
1829
1830 let path = concat!(
1831 env!("CARGO_MANIFEST_DIR"),
1832 "/tests/images/png/transparency/tp1n3p08.png"
1833 );
1834 let img = crate::open(path).unwrap();
1835 let rgba8 = img.as_rgba8().unwrap();
1836 let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3];
1837 for filter in filters {
1838 assert_resize(rgba8, *filter);
1839 }
1840 }
1841
1842 #[test]
1843 fn bug_1600() {
1844 let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap();
1845 let result = resize(&image, 22, 22, FilterType::Lanczos3);
1846 assert!(result.into_raw().into_iter().any(|c| c != 0));
1847 }
1848
1849 #[test]
1850 fn issue_2340() {
1851 let empty = crate::GrayImage::from_raw(1 << 31, 0, vec![]).unwrap();
1852 let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1854 assert!(result.into_raw().into_iter().all(|c| c == 0));
1855 let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1858 assert!(result.into_raw().into_iter().all(|c| c == 0));
1859 }
1860
1861 #[test]
1862 fn issue_2340_refl() {
1863 let empty = crate::GrayImage::from_raw(0, 1 << 31, vec![]).unwrap();
1865 let result = resize(&empty, 1, 1, FilterType::Lanczos3);
1866 assert!(result.into_raw().into_iter().all(|c| c == 0));
1867 let result = resize(&empty, 256, 256, FilterType::Lanczos3);
1868 assert!(result.into_raw().into_iter().all(|c| c == 0));
1869 }
1870}