1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! This module provides useful traits that were deprecated in rust

// Note copied from the stdlib under MIT license

use num_traits::{Bounded, Num, NumCast};
use std::ops::AddAssign;

use crate::color::{Luma, LumaA, Rgb, Rgba};
use crate::ExtendedColorType;

/// Types which are safe to treat as an immutable byte slice in a pixel layout
/// for image encoding.
pub trait EncodableLayout: seals::EncodableLayout {
    /// Get the bytes of this value.
    fn as_bytes(&self) -> &[u8];
}

impl EncodableLayout for [u8] {
    fn as_bytes(&self) -> &[u8] {
        bytemuck::cast_slice(self)
    }
}

impl EncodableLayout for [u16] {
    fn as_bytes(&self) -> &[u8] {
        bytemuck::cast_slice(self)
    }
}

impl EncodableLayout for [f32] {
    fn as_bytes(&self) -> &[u8] {
        bytemuck::cast_slice(self)
    }
}

/// The type of each channel in a pixel. For example, this can be `u8`, `u16`, `f32`.
// TODO rename to `PixelComponent`? Split up into separate traits? Seal?
pub trait Primitive: Copy + NumCast + Num + PartialOrd<Self> + Clone + Bounded {
    /// The maximum value for this type of primitive within the context of color.
    /// For floats, the maximum is `1.0`, whereas the integer types inherit their usual maximum values.
    const DEFAULT_MAX_VALUE: Self;

    /// The minimum value for this type of primitive within the context of color.
    /// For floats, the minimum is `0.0`, whereas the integer types inherit their usual minimum values.
    const DEFAULT_MIN_VALUE: Self;
}

macro_rules! declare_primitive {
    ($base:ty: ($from:expr)..$to:expr) => {
        impl Primitive for $base {
            const DEFAULT_MAX_VALUE: Self = $to;
            const DEFAULT_MIN_VALUE: Self = $from;
        }
    };
}

declare_primitive!(usize: (0)..Self::MAX);
declare_primitive!(u8: (0)..Self::MAX);
declare_primitive!(u16: (0)..Self::MAX);
declare_primitive!(u32: (0)..Self::MAX);
declare_primitive!(u64: (0)..Self::MAX);

declare_primitive!(isize: (Self::MIN)..Self::MAX);
declare_primitive!(i8: (Self::MIN)..Self::MAX);
declare_primitive!(i16: (Self::MIN)..Self::MAX);
declare_primitive!(i32: (Self::MIN)..Self::MAX);
declare_primitive!(i64: (Self::MIN)..Self::MAX);
declare_primitive!(f32: (0.0)..1.0);
declare_primitive!(f64: (0.0)..1.0);

/// An `Enlargable::Larger` value should be enough to calculate
/// the sum (average) of a few hundred or thousand Enlargeable values.
pub trait Enlargeable: Sized + Bounded + NumCast {
    type Larger: Copy + NumCast + Num + PartialOrd<Self::Larger> + Clone + Bounded + AddAssign;

    fn clamp_from(n: Self::Larger) -> Self {
        if n > Self::max_value().to_larger() {
            Self::max_value()
        } else if n < Self::min_value().to_larger() {
            Self::min_value()
        } else {
            NumCast::from(n).unwrap()
        }
    }

    fn to_larger(self) -> Self::Larger {
        NumCast::from(self).unwrap()
    }
}

impl Enlargeable for u8 {
    type Larger = u32;
}
impl Enlargeable for u16 {
    type Larger = u32;
}
impl Enlargeable for u32 {
    type Larger = u64;
}
impl Enlargeable for u64 {
    type Larger = u128;
}
impl Enlargeable for usize {
    // Note: On 32-bit architectures, u64 should be enough here.
    type Larger = u128;
}
impl Enlargeable for i8 {
    type Larger = i32;
}
impl Enlargeable for i16 {
    type Larger = i32;
}
impl Enlargeable for i32 {
    type Larger = i64;
}
impl Enlargeable for i64 {
    type Larger = i128;
}
impl Enlargeable for isize {
    // Note: On 32-bit architectures, i64 should be enough here.
    type Larger = i128;
}
impl Enlargeable for f32 {
    type Larger = f64;
}
impl Enlargeable for f64 {
    type Larger = f64;
}

/// Linear interpolation without involving floating numbers.
pub trait Lerp: Bounded + NumCast {
    type Ratio: Primitive;

    fn lerp(a: Self, b: Self, ratio: Self::Ratio) -> Self {
        let a = <Self::Ratio as NumCast>::from(a).unwrap();
        let b = <Self::Ratio as NumCast>::from(b).unwrap();

        let res = a + (b - a) * ratio;

        if res > NumCast::from(Self::max_value()).unwrap() {
            Self::max_value()
        } else if res < NumCast::from(0).unwrap() {
            NumCast::from(0).unwrap()
        } else {
            NumCast::from(res).unwrap()
        }
    }
}

impl Lerp for u8 {
    type Ratio = f32;
}

impl Lerp for u16 {
    type Ratio = f32;
}

impl Lerp for u32 {
    type Ratio = f64;
}

impl Lerp for f32 {
    type Ratio = f32;

    fn lerp(a: Self, b: Self, ratio: Self::Ratio) -> Self {
        a + (b - a) * ratio
    }
}

/// The pixel with an associated `ColorType`.
/// Not all possible pixels represent one of the predefined `ColorType`s.
pub trait PixelWithColorType: Pixel + private::SealedPixelWithColorType {
    /// This pixel has the format of one of the predefined `ColorType`s,
    /// such as `Rgb8`, `La16` or `Rgba32F`.
    /// This is needed for automatically detecting
    /// a color format when saving an image as a file.
    const COLOR_TYPE: ExtendedColorType;
}

impl PixelWithColorType for Rgb<u8> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgb8;
}
impl PixelWithColorType for Rgb<u16> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgb16;
}
impl PixelWithColorType for Rgb<f32> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgb32F;
}

impl PixelWithColorType for Rgba<u8> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgba8;
}
impl PixelWithColorType for Rgba<u16> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgba16;
}
impl PixelWithColorType for Rgba<f32> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::Rgba32F;
}

impl PixelWithColorType for Luma<u8> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::L8;
}
impl PixelWithColorType for Luma<u16> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::L16;
}
impl PixelWithColorType for LumaA<u8> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::La8;
}
impl PixelWithColorType for LumaA<u16> {
    const COLOR_TYPE: ExtendedColorType = ExtendedColorType::La16;
}

/// Prevents down-stream users from implementing the `Primitive` trait
mod private {
    use crate::color::*;

    pub trait SealedPixelWithColorType {}
    impl SealedPixelWithColorType for Rgb<u8> {}
    impl SealedPixelWithColorType for Rgb<u16> {}
    impl SealedPixelWithColorType for Rgb<f32> {}

    impl SealedPixelWithColorType for Rgba<u8> {}
    impl SealedPixelWithColorType for Rgba<u16> {}
    impl SealedPixelWithColorType for Rgba<f32> {}

    impl SealedPixelWithColorType for Luma<u8> {}
    impl SealedPixelWithColorType for LumaA<u8> {}

    impl SealedPixelWithColorType for Luma<u16> {}
    impl SealedPixelWithColorType for LumaA<u16> {}
}

/// A generalized pixel.
///
/// A pixel object is usually not used standalone but as a view into an image buffer.
pub trait Pixel: Copy + Clone {
    /// The scalar type that is used to store each channel in this pixel.
    type Subpixel: Primitive;

    /// The number of channels of this pixel type.
    const CHANNEL_COUNT: u8;

    /// Returns the components as a slice.
    fn channels(&self) -> &[Self::Subpixel];

    /// Returns the components as a mutable slice
    fn channels_mut(&mut self) -> &mut [Self::Subpixel];

    /// A string that can help to interpret the meaning each channel
    /// See [gimp babl](http://gegl.org/babl/).
    const COLOR_MODEL: &'static str;

    /// Returns the channels of this pixel as a 4 tuple. If the pixel
    /// has less than 4 channels the remainder is filled with the maximum value
    #[deprecated(since = "0.24.0", note = "Use `channels()` or `channels_mut()`")]
    fn channels4(
        &self,
    ) -> (
        Self::Subpixel,
        Self::Subpixel,
        Self::Subpixel,
        Self::Subpixel,
    );

    /// Construct a pixel from the 4 channels a, b, c and d.
    /// If the pixel does not contain 4 channels the extra are ignored.
    #[deprecated(
        since = "0.24.0",
        note = "Use the constructor of the pixel, for example `Rgba([r,g,b,a])` or `Pixel::from_slice`"
    )]
    fn from_channels(
        a: Self::Subpixel,
        b: Self::Subpixel,
        c: Self::Subpixel,
        d: Self::Subpixel,
    ) -> Self;

    /// Returns a view into a slice.
    ///
    /// Note: The slice length is not checked on creation. Thus the caller has to ensure
    /// that the slice is long enough to prevent panics if the pixel is used later on.
    fn from_slice(slice: &[Self::Subpixel]) -> &Self;

    /// Returns mutable view into a mutable slice.
    ///
    /// Note: The slice length is not checked on creation. Thus the caller has to ensure
    /// that the slice is long enough to prevent panics if the pixel is used later on.
    fn from_slice_mut(slice: &mut [Self::Subpixel]) -> &mut Self;

    /// Convert this pixel to RGB
    fn to_rgb(&self) -> Rgb<Self::Subpixel>;

    /// Convert this pixel to RGB with an alpha channel
    fn to_rgba(&self) -> Rgba<Self::Subpixel>;

    /// Convert this pixel to luma
    fn to_luma(&self) -> Luma<Self::Subpixel>;

    /// Convert this pixel to luma with an alpha channel
    fn to_luma_alpha(&self) -> LumaA<Self::Subpixel>;

    /// Apply the function ```f``` to each channel of this pixel.
    fn map<F>(&self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel of this pixel.
    fn apply<F>(&mut self, f: F)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Apply the function ```g``` to the alpha channel.
    fn map_with_alpha<F, G>(&self, f: F, g: G) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
        G: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Apply the function ```g``` to the alpha channel. Works in-place.
    fn apply_with_alpha<F, G>(&mut self, f: F, g: G)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
        G: FnMut(Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel except the alpha channel.
    fn map_without_alpha<F>(&self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
    {
        let mut this = *self;
        this.apply_with_alpha(f, |x| x);
        this
    }

    /// Apply the function ```f``` to each channel except the alpha channel.
    /// Works in place.
    fn apply_without_alpha<F>(&mut self, f: F)
    where
        F: FnMut(Self::Subpixel) -> Self::Subpixel,
    {
        self.apply_with_alpha(f, |x| x);
    }

    /// Apply the function ```f``` to each channel of this pixel and
    /// ```other``` pairwise.
    fn map2<F>(&self, other: &Self, f: F) -> Self
    where
        F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel;

    /// Apply the function ```f``` to each channel of this pixel and
    /// ```other``` pairwise. Works in-place.
    fn apply2<F>(&mut self, other: &Self, f: F)
    where
        F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel;

    /// Invert this pixel
    fn invert(&mut self);

    /// Blend the color of a given pixel into ourself, taking into account alpha channels
    fn blend(&mut self, other: &Self);
}

/// Private module for supertraits of sealed traits.
mod seals {
    pub trait EncodableLayout {}

    impl EncodableLayout for [u8] {}
    impl EncodableLayout for [u16] {}
    impl EncodableLayout for [f32] {}
}