1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
#[macro_export]
/// Create an [`IndexMap`][crate::IndexMap] from a list of key-value pairs
///
/// ## Example
///
/// ```
/// use indexmap::indexmap;
///
/// let map = indexmap!{
/// "a" => 1,
/// "b" => 2,
/// };
/// assert_eq!(map["a"], 1);
/// assert_eq!(map["b"], 2);
/// assert_eq!(map.get("c"), None);
///
/// // "a" is the first key
/// assert_eq!(map.keys().next(), Some(&"a"));
/// ```
macro_rules! indexmap {
($($key:expr => $value:expr,)+) => { $crate::indexmap!($($key => $value),+) };
($($key:expr => $value:expr),*) => {
{
// Note: `stringify!($key)` is just here to consume the repetition,
// but we throw away that string literal during constant evaluation.
const CAP: usize = <[()]>::len(&[$({ stringify!($key); }),*]);
let mut map = $crate::IndexMap::with_capacity(CAP);
$(
map.insert($key, $value);
)*
map
}
};
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
#[macro_export]
/// Create an [`IndexSet`][crate::IndexSet] from a list of values
///
/// ## Example
///
/// ```
/// use indexmap::indexset;
///
/// let set = indexset!{
/// "a",
/// "b",
/// };
/// assert!(set.contains("a"));
/// assert!(set.contains("b"));
/// assert!(!set.contains("c"));
///
/// // "a" is the first value
/// assert_eq!(set.iter().next(), Some(&"a"));
/// ```
macro_rules! indexset {
($($value:expr,)+) => { $crate::indexset!($($value),+) };
($($value:expr),*) => {
{
// Note: `stringify!($value)` is just here to consume the repetition,
// but we throw away that string literal during constant evaluation.
const CAP: usize = <[()]>::len(&[$({ stringify!($value); }),*]);
let mut set = $crate::IndexSet::with_capacity(CAP);
$(
set.insert($value);
)*
set
}
};
}
// generate all the Iterator methods by just forwarding to the underlying
// self.iter and mapping its element.
macro_rules! iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
// same mapping function for both options and iterators
($map_elt:expr) => {
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map($map_elt)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.len()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth(n).map($map_elt)
}
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
fn collect<C>(self) -> C
where
C: FromIterator<Self::Item>,
{
// NB: forwarding this directly to standard iterators will
// allow it to leverage unstable traits like `TrustedLen`.
self.iter.map($map_elt).collect()
}
};
}
macro_rules! double_ended_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
// same mapping function for both options and iterators
($map_elt:expr) => {
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map($map_elt)
}
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth_back(n).map($map_elt)
}
};
}
// generate `ParallelIterator` methods by just forwarding to the underlying
// self.entries and mapping its elements.
#[cfg(any(feature = "rayon", feature = "rustc-rayon"))]
macro_rules! parallel_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
($map_elt:expr) => {
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
self.entries
.into_par_iter()
.map($map_elt)
.drive_unindexed(consumer)
}
// NB: This allows indexed collection, e.g. directly into a `Vec`, but the
// underlying iterator must really be indexed. We should remove this if we
// start having tombstones that must be filtered out.
fn opt_len(&self) -> Option<usize> {
Some(self.entries.len())
}
};
}
// generate `IndexedParallelIterator` methods by just forwarding to the underlying
// self.entries and mapping its elements.
#[cfg(any(feature = "rayon", feature = "rustc-rayon"))]
macro_rules! indexed_parallel_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
($map_elt:expr) => {
fn drive<C>(self, consumer: C) -> C::Result
where
C: Consumer<Self::Item>,
{
self.entries.into_par_iter().map($map_elt).drive(consumer)
}
fn len(&self) -> usize {
self.entries.len()
}
fn with_producer<CB>(self, callback: CB) -> CB::Output
where
CB: ProducerCallback<Self::Item>,
{
self.entries
.into_par_iter()
.map($map_elt)
.with_producer(callback)
}
};
}