1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
//! The default matrix data storage allocator.
//!
//! This will use stack-allocated buffers for matrices with dimensions known at compile-time, and
//! heap-allocated buffers for matrices with at least one dimension unknown at compile-time.

use std::cmp;
use std::ptr;

#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;

use super::Const;
use crate::base::allocator::{Allocator, Reallocator};
use crate::base::array_storage::ArrayStorage;
use crate::base::dimension::Dim;
#[cfg(any(feature = "alloc", feature = "std"))]
use crate::base::dimension::{DimName, Dyn};
use crate::base::storage::{RawStorage, RawStorageMut, Storage};
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::base::vec_storage::VecStorage;
use crate::base::Scalar;
#[cfg(any(feature = "std", feature = "alloc"))]
use std::mem::ManuallyDrop;
use std::mem::MaybeUninit;

/*
 *
 * Allocator.
 *
 */
/// An allocator based on [`ArrayStorage`] and [`VecStorage`] for statically-sized and dynamically-sized
/// matrices respectively.
#[derive(Copy, Clone, Debug)]
pub struct DefaultAllocator;

// Static - Static
impl<const R: usize, const C: usize> Allocator<Const<R>, Const<C>> for DefaultAllocator {
    type Buffer<T: Scalar> = ArrayStorage<T, R, C>;
    type BufferUninit<T: Scalar> = ArrayStorage<MaybeUninit<T>, R, C>;

    #[inline(always)]
    fn allocate_uninit<T: Scalar>(_: Const<R>, _: Const<C>) -> ArrayStorage<MaybeUninit<T>, R, C> {
        // SAFETY: An uninitialized `[MaybeUninit<_>; _]` is valid.
        let array: [[MaybeUninit<T>; R]; C] = unsafe { MaybeUninit::uninit().assume_init() };
        ArrayStorage(array)
    }

    #[inline(always)]
    unsafe fn assume_init<T: Scalar>(
        uninit: ArrayStorage<MaybeUninit<T>, R, C>,
    ) -> ArrayStorage<T, R, C> {
        // Safety:
        // * The caller guarantees that all elements of the array are initialized
        // * `MaybeUninit<T>` and T are guaranteed to have the same layout
        // * `MaybeUninit` does not drop, so there are no double-frees
        // And thus the conversion is safe
        ArrayStorage((&uninit as *const _ as *const [_; C]).read())
    }

    #[inline]
    fn allocate_from_iterator<T: Scalar, I: IntoIterator<Item = T>>(
        nrows: Const<R>,
        ncols: Const<C>,
        iter: I,
    ) -> Self::Buffer<T> {
        let mut res = Self::allocate_uninit(nrows, ncols);
        let mut count = 0;

        // Safety: conversion to a slice is OK because the Buffer is known to be contiguous.
        let res_slice = unsafe { res.as_mut_slice_unchecked() };
        for (res, e) in res_slice.iter_mut().zip(iter.into_iter()) {
            *res = MaybeUninit::new(e);
            count += 1;
        }

        assert!(
            count == nrows.value() * ncols.value(),
            "Matrix init. from iterator: iterator not long enough."
        );

        // Safety: the assertion above made sure that the iterator
        //         yielded enough elements to initialize our matrix.
        unsafe { <Self as Allocator<Const<R>, Const<C>>>::assume_init(res) }
    }
}

// Dyn - Static
// Dyn - Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<C: Dim> Allocator<Dyn, C> for DefaultAllocator {
    type Buffer<T: Scalar> = VecStorage<T, Dyn, C>;
    type BufferUninit<T: Scalar> = VecStorage<MaybeUninit<T>, Dyn, C>;

    #[inline]
    fn allocate_uninit<T: Scalar>(nrows: Dyn, ncols: C) -> VecStorage<MaybeUninit<T>, Dyn, C> {
        let mut data = Vec::new();
        let length = nrows.value() * ncols.value();
        data.reserve_exact(length);
        data.resize_with(length, MaybeUninit::uninit);
        VecStorage::new(nrows, ncols, data)
    }

    #[inline]
    unsafe fn assume_init<T: Scalar>(
        uninit: VecStorage<MaybeUninit<T>, Dyn, C>,
    ) -> VecStorage<T, Dyn, C> {
        // Avoids a double-drop.
        let (nrows, ncols) = uninit.shape();
        let vec: Vec<_> = uninit.into();
        let mut md = ManuallyDrop::new(vec);

        // Safety:
        // - MaybeUninit<T> has the same alignment and layout as T.
        // - The length and capacity come from a valid vector.
        let new_data = Vec::from_raw_parts(md.as_mut_ptr() as *mut _, md.len(), md.capacity());

        VecStorage::new(nrows, ncols, new_data)
    }

    #[inline]
    fn allocate_from_iterator<T: Scalar, I: IntoIterator<Item = T>>(
        nrows: Dyn,
        ncols: C,
        iter: I,
    ) -> Self::Buffer<T> {
        let it = iter.into_iter();
        let res: Vec<T> = it.collect();
        assert!(res.len() == nrows.value() * ncols.value(),
                "Allocation from iterator error: the iterator did not yield the correct number of elements.");

        VecStorage::new(nrows, ncols, res)
    }
}

// Static - Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<R: DimName> Allocator<R, Dyn> for DefaultAllocator {
    type Buffer<T: Scalar> = VecStorage<T, R, Dyn>;
    type BufferUninit<T: Scalar> = VecStorage<MaybeUninit<T>, R, Dyn>;

    #[inline]
    fn allocate_uninit<T: Scalar>(nrows: R, ncols: Dyn) -> VecStorage<MaybeUninit<T>, R, Dyn> {
        let mut data = Vec::new();
        let length = nrows.value() * ncols.value();
        data.reserve_exact(length);
        data.resize_with(length, MaybeUninit::uninit);

        VecStorage::new(nrows, ncols, data)
    }

    #[inline]
    unsafe fn assume_init<T: Scalar>(
        uninit: VecStorage<MaybeUninit<T>, R, Dyn>,
    ) -> VecStorage<T, R, Dyn> {
        // Avoids a double-drop.
        let (nrows, ncols) = uninit.shape();
        let vec: Vec<_> = uninit.into();
        let mut md = ManuallyDrop::new(vec);

        // Safety:
        // - MaybeUninit<T> has the same alignment and layout as T.
        // - The length and capacity come from a valid vector.
        let new_data = Vec::from_raw_parts(md.as_mut_ptr() as *mut _, md.len(), md.capacity());

        VecStorage::new(nrows, ncols, new_data)
    }

    #[inline]
    fn allocate_from_iterator<T: Scalar, I: IntoIterator<Item = T>>(
        nrows: R,
        ncols: Dyn,
        iter: I,
    ) -> Self::Buffer<T> {
        let it = iter.into_iter();
        let res: Vec<T> = it.collect();
        assert!(res.len() == nrows.value() * ncols.value(),
                "Allocation from iterator error: the iterator did not yield the correct number of elements.");

        VecStorage::new(nrows, ncols, res)
    }
}

/*
 *
 * Reallocator.
 *
 */
// Anything -> Static × Static
impl<T: Scalar, RFrom, CFrom, const RTO: usize, const CTO: usize>
    Reallocator<T, RFrom, CFrom, Const<RTO>, Const<CTO>> for DefaultAllocator
where
    RFrom: Dim,
    CFrom: Dim,
    Self: Allocator<RFrom, CFrom>,
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: Const<RTO>,
        cto: Const<CTO>,
        buf: <Self as Allocator<RFrom, CFrom>>::Buffer<T>,
    ) -> ArrayStorage<MaybeUninit<T>, RTO, CTO> {
        let mut res = <Self as Allocator<Const<RTO>, Const<CTO>>>::allocate_uninit(rto, cto);

        let (rfrom, cfrom) = buf.shape();

        let len_from = rfrom.value() * cfrom.value();
        let len_to = rto.value() * cto.value();
        let len_copied = cmp::min(len_from, len_to);
        ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);

        // Safety:
        // - We don’t care about dropping elements because the caller is responsible for dropping things.
        // - We forget `buf` so that we don’t drop the other elements, but ensure the buffer itself is cleaned up.
        buf.forget_elements();

        res
    }
}

// Static × Static -> Dyn × Any
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CTo, const RFROM: usize, const CFROM: usize>
    Reallocator<T, Const<RFROM>, Const<CFROM>, Dyn, CTo> for DefaultAllocator
where
    CTo: Dim,
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: Dyn,
        cto: CTo,
        buf: ArrayStorage<T, RFROM, CFROM>,
    ) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
        let mut res = <Self as Allocator<Dyn, CTo>>::allocate_uninit(rto, cto);

        let (rfrom, cfrom) = buf.shape();

        let len_from = rfrom.value() * cfrom.value();
        let len_to = rto.value() * cto.value();
        let len_copied = cmp::min(len_from, len_to);
        ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);

        // Safety:
        // - We don’t care about dropping elements because the caller is responsible for dropping things.
        // - We forget `buf` so that we don’t drop the other elements, but ensure the buffer itself is cleaned up.
        buf.forget_elements();

        res
    }
}

// Static × Static -> Static × Dyn
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RTo, const RFROM: usize, const CFROM: usize>
    Reallocator<T, Const<RFROM>, Const<CFROM>, RTo, Dyn> for DefaultAllocator
where
    RTo: DimName,
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: RTo,
        cto: Dyn,
        buf: ArrayStorage<T, RFROM, CFROM>,
    ) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
        let mut res = <Self as Allocator<RTo, Dyn>>::allocate_uninit(rto, cto);

        let (rfrom, cfrom) = buf.shape();

        let len_from = rfrom.value() * cfrom.value();
        let len_to = rto.value() * cto.value();
        let len_copied = cmp::min(len_from, len_to);
        ptr::copy_nonoverlapping(buf.ptr(), res.ptr_mut() as *mut T, len_copied);

        // Safety:
        // - We don’t care about dropping elements because the caller is responsible for dropping things.
        // - We forget `buf` so that we don’t drop the other elements, but ensure the buffer itself is cleaned up.
        buf.forget_elements();

        res
    }
}

// All conversion from a dynamic buffer to a dynamic buffer.
#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CFrom: Dim, CTo: Dim> Reallocator<T, Dyn, CFrom, Dyn, CTo> for DefaultAllocator {
    #[inline]
    unsafe fn reallocate_copy(
        rto: Dyn,
        cto: CTo,
        buf: VecStorage<T, Dyn, CFrom>,
    ) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
        let new_buf = buf.resize(rto.value() * cto.value());
        VecStorage::new(rto, cto, new_buf)
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, CFrom: Dim, RTo: DimName> Reallocator<T, Dyn, CFrom, RTo, Dyn>
    for DefaultAllocator
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: RTo,
        cto: Dyn,
        buf: VecStorage<T, Dyn, CFrom>,
    ) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
        let new_buf = buf.resize(rto.value() * cto.value());
        VecStorage::new(rto, cto, new_buf)
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RFrom: DimName, CTo: Dim> Reallocator<T, RFrom, Dyn, Dyn, CTo>
    for DefaultAllocator
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: Dyn,
        cto: CTo,
        buf: VecStorage<T, RFrom, Dyn>,
    ) -> VecStorage<MaybeUninit<T>, Dyn, CTo> {
        let new_buf = buf.resize(rto.value() * cto.value());
        VecStorage::new(rto, cto, new_buf)
    }
}

#[cfg(any(feature = "std", feature = "alloc"))]
impl<T: Scalar, RFrom: DimName, RTo: DimName> Reallocator<T, RFrom, Dyn, RTo, Dyn>
    for DefaultAllocator
{
    #[inline]
    unsafe fn reallocate_copy(
        rto: RTo,
        cto: Dyn,
        buf: VecStorage<T, RFrom, Dyn>,
    ) -> VecStorage<MaybeUninit<T>, RTo, Dyn> {
        let new_buf = buf.resize(rto.value() * cto.value());
        VecStorage::new(rto, cto, new_buf)
    }
}