1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
use num::{One, Zero};
use std::iter;
use std::ops::{
    Add, AddAssign, Div, DivAssign, Index, IndexMut, Mul, MulAssign, Neg, Sub, SubAssign,
};

use simba::scalar::{
    ClosedAddAssign, ClosedDivAssign, ClosedMulAssign, ClosedNeg, ClosedSubAssign,
};

use crate::base::allocator::{Allocator, SameShapeAllocator, SameShapeC, SameShapeR};
use crate::base::blas_uninit::gemm_uninit;
use crate::base::constraint::{
    AreMultipliable, DimEq, SameNumberOfColumns, SameNumberOfRows, ShapeConstraint,
};
use crate::base::dimension::{Dim, DimMul, DimName, DimProd, Dyn};
use crate::base::storage::{Storage, StorageMut};
use crate::base::uninit::Uninit;
use crate::base::{DefaultAllocator, Matrix, MatrixSum, OMatrix, Scalar, VectorView};
use crate::storage::IsContiguous;
use crate::uninit::{Init, InitStatus};
use crate::{RawStorage, RawStorageMut, SimdComplexField};
use std::mem::MaybeUninit;

/*
 *
 * Indexing.
 *
 */
impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Index<usize> for Matrix<T, R, C, S> {
    type Output = T;

    #[inline]
    fn index(&self, i: usize) -> &Self::Output {
        let ij = self.vector_to_matrix_index(i);
        &self[ij]
    }
}

impl<T, R: Dim, C: Dim, S: RawStorage<T, R, C>> Index<(usize, usize)> for Matrix<T, R, C, S> {
    type Output = T;

    #[inline]
    fn index(&self, ij: (usize, usize)) -> &Self::Output {
        let shape = self.shape();
        assert!(
            ij.0 < shape.0 && ij.1 < shape.1,
            "Matrix index out of bounds."
        );

        unsafe { self.get_unchecked((ij.0, ij.1)) }
    }
}

// Mutable versions.
impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> IndexMut<usize> for Matrix<T, R, C, S> {
    #[inline]
    fn index_mut(&mut self, i: usize) -> &mut T {
        let ij = self.vector_to_matrix_index(i);
        &mut self[ij]
    }
}

impl<T, R: Dim, C: Dim, S: RawStorageMut<T, R, C>> IndexMut<(usize, usize)> for Matrix<T, R, C, S> {
    #[inline]
    fn index_mut(&mut self, ij: (usize, usize)) -> &mut T {
        let shape = self.shape();
        assert!(
            ij.0 < shape.0 && ij.1 < shape.1,
            "Matrix index out of bounds."
        );

        unsafe { self.get_unchecked_mut((ij.0, ij.1)) }
    }
}

/*
 *
 * Neg
 *
 */
impl<T, R: Dim, C: Dim, S> Neg for Matrix<T, R, C, S>
where
    T: Scalar + ClosedNeg,
    S: Storage<T, R, C>,
    DefaultAllocator: Allocator<R, C>,
{
    type Output = OMatrix<T, R, C>;

    #[inline]
    fn neg(self) -> Self::Output {
        let mut res = self.into_owned();
        res.neg_mut();
        res
    }
}

impl<'a, T, R: Dim, C: Dim, S> Neg for &'a Matrix<T, R, C, S>
where
    T: Scalar + ClosedNeg,
    S: Storage<T, R, C>,
    DefaultAllocator: Allocator<R, C>,
{
    type Output = OMatrix<T, R, C>;

    #[inline]
    fn neg(self) -> Self::Output {
        -self.clone_owned()
    }
}

impl<T, R: Dim, C: Dim, S> Matrix<T, R, C, S>
where
    T: Scalar + ClosedNeg,
    S: StorageMut<T, R, C>,
{
    /// Negates `self` in-place.
    #[inline]
    pub fn neg_mut(&mut self) {
        for e in self.iter_mut() {
            *e = -e.clone()
        }
    }
}

/*
 *
 * Addition & Subtraction
 *
 */

macro_rules! componentwise_binop_impl(
    ($Trait: ident, $method: ident, $bound: ident;
     $TraitAssign: ident, $method_assign: ident, $method_assign_statically_unchecked: ident,
     $method_assign_statically_unchecked_rhs: ident;
     $method_to: ident, $method_to_statically_unchecked_uninit: ident) => {

        impl<T, R1: Dim, C1: Dim, SA: Storage<T, R1, C1>> Matrix<T, R1, C1, SA>
            where T: Scalar + $bound {

            /*
             *
             * Methods without dimension checking at compile-time.
             * This is useful for code reuse because the sum representative system does not plays
             * easily with static checks.
             *
             */
            #[inline]
            fn $method_to_statically_unchecked_uninit<Status, R2: Dim, C2: Dim, SB,
                                                       R3: Dim, C3: Dim, SC>(&self,
                                                                     _status: Status,
                                                                     rhs: &Matrix<T, R2, C2, SB>,
                                                                     out: &mut Matrix<Status::Value, R3, C3, SC>)
                where Status: InitStatus<T>,
                      SB: RawStorage<T, R2, C2>,
                      SC: RawStorageMut<Status::Value, R3, C3> {
                assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
                assert_eq!(self.shape(), out.shape(), "Matrix addition/subtraction output dimensions mismatch.");

                // This is the most common case and should be deduced at compile-time.
                // TODO: use specialization instead?
                unsafe {
                    if self.data.is_contiguous() && rhs.data.is_contiguous() && out.data.is_contiguous() {
                        let arr1 = self.data.as_slice_unchecked();
                        let arr2 = rhs.data.as_slice_unchecked();
                        let out  = out.data.as_mut_slice_unchecked();
                        for i in 0 .. arr1.len() {
                            Status::init(out.get_unchecked_mut(i), arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone()));
                        }
                    } else {
                        for j in 0 .. self.ncols() {
                            for i in 0 .. self.nrows() {
                                let val = self.get_unchecked((i, j)).clone().$method(rhs.get_unchecked((i, j)).clone());
                                Status::init(out.get_unchecked_mut((i, j)), val);
                            }
                        }
                    }
                }
            }


            #[inline]
            fn $method_assign_statically_unchecked<R2, C2, SB>(&mut self, rhs: &Matrix<T, R2, C2, SB>)
                where R2: Dim,
                      C2: Dim,
                      SA: StorageMut<T, R1, C1>,
                      SB: Storage<T, R2, C2> {
                assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");

                // This is the most common case and should be deduced at compile-time.
                // TODO: use specialization instead?
                unsafe {
                    if self.data.is_contiguous() && rhs.data.is_contiguous() {
                        let arr1 = self.data.as_mut_slice_unchecked();
                        let arr2 = rhs.data.as_slice_unchecked();

                        for i in 0 .. arr2.len() {
                            arr1.get_unchecked_mut(i).$method_assign(arr2.get_unchecked(i).clone());
                        }
                    } else {
                        for j in 0 .. rhs.ncols() {
                            for i in 0 .. rhs.nrows() {
                                self.get_unchecked_mut((i, j)).$method_assign(rhs.get_unchecked((i, j)).clone())
                            }
                        }
                    }
                }
            }


            #[inline]
            fn $method_assign_statically_unchecked_rhs<R2, C2, SB>(&self, rhs: &mut Matrix<T, R2, C2, SB>)
                where R2: Dim,
                      C2: Dim,
                      SB: StorageMut<T, R2, C2> {
                assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");

                // This is the most common case and should be deduced at compile-time.
                // TODO: use specialization instead?
                unsafe {
                    if self.data.is_contiguous() && rhs.data.is_contiguous() {
                        let arr1 = self.data.as_slice_unchecked();
                        let arr2 = rhs.data.as_mut_slice_unchecked();

                        for i in 0 .. arr1.len() {
                            let res = arr1.get_unchecked(i).clone().$method(arr2.get_unchecked(i).clone());
                            *arr2.get_unchecked_mut(i) = res;
                        }
                    } else {
                        for j in 0 .. self.ncols() {
                            for i in 0 .. self.nrows() {
                                let r = rhs.get_unchecked_mut((i, j));
                                *r = self.get_unchecked((i, j)).clone().$method(r.clone())
                            }
                        }
                    }
                }
            }


            /*
             *
             * Methods without dimension checking at compile-time.
             * This is useful for code reuse because the sum representative system does not plays
             * easily with static checks.
             *
             */
            /// Equivalent to `self + rhs` but stores the result into `out` to avoid allocations.
            #[inline]
            pub fn $method_to<R2: Dim, C2: Dim, SB,
                              R3: Dim, C3: Dim, SC>(&self,
                                                    rhs: &Matrix<T, R2, C2, SB>,
                                                    out: &mut Matrix<T, R3, C3, SC>)
                where SB: Storage<T, R2, C2>,
                      SC: StorageMut<T, R3, C3>,
                      ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> +
                                       SameNumberOfRows<R1, R3> + SameNumberOfColumns<C1, C3> {
                self.$method_to_statically_unchecked_uninit(Init, rhs, out)
            }
        }

        impl<'b, T, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: Storage<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
                  ShapeConstraint:  SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
            type Output = MatrixSum<T, R1, C1, R2, C2>;

            #[inline]
            fn $method(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
                assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
                let mut res = self.into_owned_sum::<R2, C2>();
                res.$method_assign_statically_unchecked(rhs);
                res
            }
        }

        impl<'a, T, R1, C1, R2, C2, SA, SB> $Trait<Matrix<T, R2, C2, SB>> for &'a Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: Storage<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  DefaultAllocator: SameShapeAllocator<R2, C2, R1, C1>,
                  ShapeConstraint:  SameNumberOfRows<R2, R1> + SameNumberOfColumns<C2, C1> {
            type Output = MatrixSum<T, R2, C2, R1, C1>;

            #[inline]
            fn $method(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
                let mut rhs = rhs.into_owned_sum::<R1, C1>();
                assert_eq!(self.shape(), rhs.shape(), "Matrix addition/subtraction dimensions mismatch.");
                self.$method_assign_statically_unchecked_rhs(&mut rhs);
                rhs
            }
        }

        impl<T, R1, C1, R2, C2, SA, SB> $Trait<Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: Storage<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
                  ShapeConstraint:  SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
            type Output = MatrixSum<T, R1, C1, R2, C2>;

            #[inline]
            fn $method(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
                self.$method(&rhs)
            }
        }

        impl<'a, 'b, T, R1, C1, R2, C2, SA, SB> $Trait<&'b Matrix<T, R2, C2, SB>> for &'a Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: Storage<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  DefaultAllocator: SameShapeAllocator<R1, C1, R2, C2>,
                  ShapeConstraint:  SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
            type Output = MatrixSum<T, R1, C1, R2, C2>;

            #[inline]
            fn $method(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
                let (nrows, ncols) = self.shape();
                let nrows: SameShapeR<R1, R2> = Dim::from_usize(nrows);
                let ncols: SameShapeC<C1, C2> = Dim::from_usize(ncols);
                let mut res = Matrix::uninit(nrows, ncols);
                self.$method_to_statically_unchecked_uninit(Uninit, rhs, &mut res);
                // SAFETY: the output has been initialized above.
                unsafe { res.assume_init() }
            }
        }

        impl<'b, T, R1, C1, R2, C2, SA, SB> $TraitAssign<&'b Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: StorageMut<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {

            #[inline]
            fn $method_assign(&mut self, rhs: &'b Matrix<T, R2, C2, SB>) {
                self.$method_assign_statically_unchecked(rhs)
            }
        }

        impl<T, R1, C1, R2, C2, SA, SB> $TraitAssign<Matrix<T, R2, C2, SB>> for Matrix<T, R1, C1, SA>
            where R1: Dim, C1: Dim, R2: Dim, C2: Dim,
                  T: Scalar + $bound,
                  SA: StorageMut<T, R1, C1>,
                  SB: Storage<T, R2, C2>,
                  ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {

            #[inline]
            fn $method_assign(&mut self, rhs: Matrix<T, R2, C2, SB>) {
                self.$method_assign(&rhs)
            }
        }
    }
);

componentwise_binop_impl!(Add, add, ClosedAddAssign;
                          AddAssign, add_assign, add_assign_statically_unchecked, add_assign_statically_unchecked_mut;
                          add_to, add_to_statically_unchecked_uninit);
componentwise_binop_impl!(Sub, sub, ClosedSubAssign;
                          SubAssign, sub_assign, sub_assign_statically_unchecked, sub_assign_statically_unchecked_mut;
                          sub_to, sub_to_statically_unchecked_uninit);

impl<T, R: DimName, C: DimName> iter::Sum for OMatrix<T, R, C>
where
    T: Scalar + ClosedAddAssign + Zero,
    DefaultAllocator: Allocator<R, C>,
{
    fn sum<I: Iterator<Item = OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C> {
        iter.fold(Matrix::zero(), |acc, x| acc + x)
    }
}

impl<T, C: Dim> iter::Sum for OMatrix<T, Dyn, C>
where
    T: Scalar + ClosedAddAssign + Zero,
    DefaultAllocator: Allocator<Dyn, C>,
{
    /// # Example
    /// ```
    /// # use nalgebra::DVector;
    /// assert_eq!(vec![DVector::repeat(3, 1.0f64),
    ///                 DVector::repeat(3, 1.0f64),
    ///                 DVector::repeat(3, 1.0f64)].into_iter().sum::<DVector<f64>>(),
    ///            DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64) + DVector::repeat(3, 1.0f64));
    /// ```
    ///
    /// # Panics
    /// Panics if the iterator is empty:
    /// ```should_panic
    /// # use std::iter;
    /// # use nalgebra::DMatrix;
    /// iter::empty::<DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
    /// ```
    fn sum<I: Iterator<Item = OMatrix<T, Dyn, C>>>(mut iter: I) -> OMatrix<T, Dyn, C> {
        if let Some(first) = iter.next() {
            iter.fold(first, |acc, x| acc + x)
        } else {
            panic!("Cannot compute `sum` of empty iterator.")
        }
    }
}

impl<'a, T, R: DimName, C: DimName> iter::Sum<&'a OMatrix<T, R, C>> for OMatrix<T, R, C>
where
    T: Scalar + ClosedAddAssign + Zero,
    DefaultAllocator: Allocator<R, C>,
{
    fn sum<I: Iterator<Item = &'a OMatrix<T, R, C>>>(iter: I) -> OMatrix<T, R, C> {
        iter.fold(Matrix::zero(), |acc, x| acc + x)
    }
}

impl<'a, T, C: Dim> iter::Sum<&'a OMatrix<T, Dyn, C>> for OMatrix<T, Dyn, C>
where
    T: Scalar + ClosedAddAssign + Zero,
    DefaultAllocator: Allocator<Dyn, C>,
{
    /// # Example
    /// ```
    /// # use nalgebra::DVector;
    /// let v = &DVector::repeat(3, 1.0f64);
    ///
    /// assert_eq!(vec![v, v, v].into_iter().sum::<DVector<f64>>(),
    ///            v + v + v);
    /// ```
    ///
    /// # Panics
    /// Panics if the iterator is empty:
    /// ```should_panic
    /// # use std::iter;
    /// # use nalgebra::DMatrix;
    /// iter::empty::<&DMatrix<f64>>().sum::<DMatrix<f64>>(); // panics!
    /// ```
    fn sum<I: Iterator<Item = &'a OMatrix<T, Dyn, C>>>(mut iter: I) -> OMatrix<T, Dyn, C> {
        if let Some(first) = iter.next() {
            iter.fold(first.clone(), |acc, x| acc + x)
        } else {
            panic!("Cannot compute `sum` of empty iterator.")
        }
    }
}

/*
 *
 * Multiplication
 *
 */

// Matrix × Scalar
// Matrix / Scalar
macro_rules! componentwise_scalarop_impl(
    ($Trait: ident, $method: ident, $bound: ident;
     $TraitAssign: ident, $method_assign: ident) => {
        impl<T, R: Dim, C: Dim, S> $Trait<T> for Matrix<T, R, C, S>
            where T: Scalar + $bound,
                  S: Storage<T, R, C>,
                  DefaultAllocator: Allocator<R, C> {
            type Output = OMatrix<T, R, C>;

            #[inline]
            fn $method(self, rhs: T) -> Self::Output {
                let mut res = self.into_owned();

                // XXX: optimize our iterator!
                //
                // Using our own iterator prevents loop unrolling, which breaks some optimization
                // (like SIMD). On the other hand, using the slice iterator is 4x faster.

                // for left in res.iter_mut() {
                for left in res.as_mut_slice().iter_mut() {
                    *left = left.clone().$method(rhs.clone())
                }

                res
            }
        }

        impl<'a, T, R: Dim, C: Dim, S> $Trait<T> for &'a Matrix<T, R, C, S>
            where T: Scalar + $bound,
                  S: Storage<T, R, C>,
                  DefaultAllocator: Allocator<R, C> {
            type Output = OMatrix<T, R, C>;

            #[inline]
            fn $method(self, rhs: T) -> Self::Output {
                self.clone_owned().$method(rhs)
            }
        }

        impl<T, R: Dim, C: Dim, S> $TraitAssign<T> for Matrix<T, R, C, S>
            where T: Scalar + $bound,
                  S: StorageMut<T, R, C> {
            #[inline]
            fn $method_assign(&mut self, rhs: T) {
                for j in 0 .. self.ncols() {
                    for i in 0 .. self.nrows() {
                        unsafe { self.get_unchecked_mut((i, j)).$method_assign(rhs.clone()) };
                    }
                }
            }
        }
    }
);

componentwise_scalarop_impl!(Mul, mul, ClosedMulAssign; MulAssign, mul_assign);
componentwise_scalarop_impl!(Div, div, ClosedDivAssign; DivAssign, div_assign);

macro_rules! left_scalar_mul_impl(
    ($($T: ty),* $(,)*) => {$(
        impl<R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<Matrix<$T, R, C, S>> for $T
            where DefaultAllocator: Allocator<R, C> {
            type Output = OMatrix<$T, R, C>;

            #[inline]
            fn mul(self, rhs: Matrix<$T, R, C, S>) -> Self::Output {
                let mut res = rhs.into_owned();

                // XXX: optimize our iterator!
                //
                // Using our own iterator prevents loop unrolling, which breaks some optimization
                // (like SIMD). On the other hand, using the slice iterator is 4x faster.

                // for rhs in res.iter_mut() {
                for rhs in res.as_mut_slice().iter_mut() {
                    *rhs *= self
                }

                res
            }
        }

        impl<'b, R: Dim, C: Dim, S: Storage<$T, R, C>> Mul<&'b Matrix<$T, R, C, S>> for $T
            where DefaultAllocator: Allocator<R, C> {
            type Output = OMatrix<$T, R, C>;

            #[inline]
            fn mul(self, rhs: &'b Matrix<$T, R, C, S>) -> Self::Output {
                self * rhs.clone_owned()
            }
        }
    )*}
);

left_scalar_mul_impl!(u8, u16, u32, u64, usize, i8, i16, i32, i64, isize, f32, f64);

// Matrix × Matrix
impl<'a, 'b, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<T, R2, C2, SB>>
    for &'a Matrix<T, R1, C1, SA>
where
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SA: Storage<T, R1, C1>,
    SB: Storage<T, R2, C2>,
    DefaultAllocator: Allocator<R1, C2>,
    ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
    type Output = OMatrix<T, R1, C2>;

    #[inline]
    fn mul(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
        let mut res = Matrix::uninit(self.shape_generic().0, rhs.shape_generic().1);
        unsafe {
            // SAFETY: this is OK because status = Uninit && bevy == 0
            gemm_uninit(Uninit, &mut res, T::one(), self, rhs, T::zero());
            res.assume_init()
        }
    }
}

impl<'a, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<T, R2, C2, SB>>
    for &'a Matrix<T, R1, C1, SA>
where
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SB: Storage<T, R2, C2>,
    SA: Storage<T, R1, C1>,
    DefaultAllocator: Allocator<R1, C2>,
    ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
    type Output = OMatrix<T, R1, C2>;

    #[inline]
    fn mul(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
        self * &rhs
    }
}

impl<'b, T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<&'b Matrix<T, R2, C2, SB>>
    for Matrix<T, R1, C1, SA>
where
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SB: Storage<T, R2, C2>,
    SA: Storage<T, R1, C1>,
    DefaultAllocator: Allocator<R1, C2>,
    ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
    type Output = OMatrix<T, R1, C2>;

    #[inline]
    fn mul(self, rhs: &'b Matrix<T, R2, C2, SB>) -> Self::Output {
        &self * rhs
    }
}

impl<T, R1: Dim, C1: Dim, R2: Dim, C2: Dim, SA, SB> Mul<Matrix<T, R2, C2, SB>>
    for Matrix<T, R1, C1, SA>
where
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SB: Storage<T, R2, C2>,
    SA: Storage<T, R1, C1>,
    DefaultAllocator: Allocator<R1, C2>,
    ShapeConstraint: AreMultipliable<R1, C1, R2, C2>,
{
    type Output = OMatrix<T, R1, C2>;

    #[inline]
    fn mul(self, rhs: Matrix<T, R2, C2, SB>) -> Self::Output {
        &self * &rhs
    }
}

// TODO: this is too restrictive:
//    − we can't use `a *= b` when `a` is a mutable slice.
//    − we can't use `a *= b` when C2 is not equal to C1.
impl<T, R1, C1, R2, SA, SB> MulAssign<Matrix<T, R2, C1, SB>> for Matrix<T, R1, C1, SA>
where
    R1: Dim,
    C1: Dim,
    R2: Dim,
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SB: Storage<T, R2, C1>,
    SA: StorageMut<T, R1, C1> + IsContiguous + Clone, // TODO: get rid of the IsContiguous
    ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
    DefaultAllocator: Allocator<R1, C1, Buffer<T> = SA>,
{
    #[inline]
    fn mul_assign(&mut self, rhs: Matrix<T, R2, C1, SB>) {
        *self = &*self * rhs
    }
}

impl<'b, T, R1, C1, R2, SA, SB> MulAssign<&'b Matrix<T, R2, C1, SB>> for Matrix<T, R1, C1, SA>
where
    R1: Dim,
    C1: Dim,
    R2: Dim,
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SB: Storage<T, R2, C1>,
    SA: StorageMut<T, R1, C1> + IsContiguous + Clone, // TODO: get rid of the IsContiguous
    ShapeConstraint: AreMultipliable<R1, C1, R2, C1>,
    // TODO: this is too restrictive. See comments for the non-ref version.
    DefaultAllocator: Allocator<R1, C1, Buffer<T> = SA>,
{
    #[inline]
    fn mul_assign(&mut self, rhs: &'b Matrix<T, R2, C1, SB>) {
        *self = &*self * rhs
    }
}

/// # Special multiplications.
impl<T, R1: Dim, C1: Dim, SA> Matrix<T, R1, C1, SA>
where
    T: Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign,
    SA: Storage<T, R1, C1>,
{
    /// Equivalent to `self.transpose() * rhs`.
    #[inline]
    #[must_use]
    pub fn tr_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> OMatrix<T, C1, C2>
    where
        SB: Storage<T, R2, C2>,
        DefaultAllocator: Allocator<C1, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2>,
    {
        let mut res = Matrix::uninit(self.shape_generic().1, rhs.shape_generic().1);
        self.xx_mul_to_uninit(Uninit, rhs, &mut res, |a, b| a.dot(b));
        // SAFETY: this is OK because the result is now initialized.
        unsafe { res.assume_init() }
    }

    /// Equivalent to `self.adjoint() * rhs`.
    #[inline]
    #[must_use]
    pub fn ad_mul<R2: Dim, C2: Dim, SB>(&self, rhs: &Matrix<T, R2, C2, SB>) -> OMatrix<T, C1, C2>
    where
        T: SimdComplexField,
        SB: Storage<T, R2, C2>,
        DefaultAllocator: Allocator<C1, C2>,
        ShapeConstraint: SameNumberOfRows<R1, R2>,
    {
        let mut res = Matrix::uninit(self.shape_generic().1, rhs.shape_generic().1);
        self.xx_mul_to_uninit(Uninit, rhs, &mut res, |a, b| a.dotc(b));
        // SAFETY: this is OK because the result is now initialized.
        unsafe { res.assume_init() }
    }

    #[inline(always)]
    fn xx_mul_to_uninit<Status, R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
        &self,
        _status: Status,
        rhs: &Matrix<T, R2, C2, SB>,
        out: &mut Matrix<Status::Value, R3, C3, SC>,
        dot: impl Fn(
            &VectorView<'_, T, R1, SA::RStride, SA::CStride>,
            &VectorView<'_, T, R2, SB::RStride, SB::CStride>,
        ) -> T,
    ) where
        Status: InitStatus<T>,
        SB: RawStorage<T, R2, C2>,
        SC: RawStorageMut<Status::Value, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
    {
        let (nrows1, ncols1) = self.shape();
        let (nrows2, ncols2) = rhs.shape();
        let (nrows3, ncols3) = out.shape();

        assert!(
            nrows1 == nrows2,
            "Matrix multiplication dimensions mismatch {:?} and {:?}: left rows != right rows.",
            self.shape(),
            rhs.shape()
        );
        assert!(
            ncols1 == nrows3,
            "Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right rows.",
            self.shape(),
            out.shape()
        );
        assert!(
            ncols2 == ncols3,
            "Matrix multiplication output dimensions mismatch {:?} and {:?}: left cols != right cols",
            rhs.shape(),
            out.shape()
        );

        for i in 0..ncols1 {
            for j in 0..ncols2 {
                let dot = dot(&self.column(i), &rhs.column(j));
                let elt = unsafe { out.get_unchecked_mut((i, j)) };
                Status::init(elt, dot);
            }
        }
    }

    /// Equivalent to `self.transpose() * rhs` but stores the result into `out` to avoid
    /// allocations.
    #[inline]
    pub fn tr_mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
        &self,
        rhs: &Matrix<T, R2, C2, SB>,
        out: &mut Matrix<T, R3, C3, SC>,
    ) where
        SB: Storage<T, R2, C2>,
        SC: StorageMut<T, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
    {
        self.xx_mul_to_uninit(Init, rhs, out, |a, b| a.dot(b))
    }

    /// Equivalent to `self.adjoint() * rhs` but stores the result into `out` to avoid
    /// allocations.
    #[inline]
    pub fn ad_mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
        &self,
        rhs: &Matrix<T, R2, C2, SB>,
        out: &mut Matrix<T, R3, C3, SC>,
    ) where
        T: SimdComplexField,
        SB: Storage<T, R2, C2>,
        SC: StorageMut<T, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R1, R2> + DimEq<C1, R3> + DimEq<C2, C3>,
    {
        self.xx_mul_to_uninit(Init, rhs, out, |a, b| a.dotc(b))
    }

    /// Equivalent to `self * rhs` but stores the result into `out` to avoid allocations.
    #[inline]
    pub fn mul_to<R2: Dim, C2: Dim, SB, R3: Dim, C3: Dim, SC>(
        &self,
        rhs: &Matrix<T, R2, C2, SB>,
        out: &mut Matrix<T, R3, C3, SC>,
    ) where
        SB: Storage<T, R2, C2>,
        SC: StorageMut<T, R3, C3>,
        ShapeConstraint: SameNumberOfRows<R3, R1>
            + SameNumberOfColumns<C3, C2>
            + AreMultipliable<R1, C1, R2, C2>,
    {
        out.gemm(T::one(), self, rhs, T::zero());
    }

    /// The kronecker product of two matrices (aka. tensor product of the corresponding linear
    /// maps).
    #[must_use]
    pub fn kronecker<R2: Dim, C2: Dim, SB>(
        &self,
        rhs: &Matrix<T, R2, C2, SB>,
    ) -> OMatrix<T, DimProd<R1, R2>, DimProd<C1, C2>>
    where
        T: ClosedMulAssign,
        R1: DimMul<R2>,
        C1: DimMul<C2>,
        SB: Storage<T, R2, C2>,
        DefaultAllocator: Allocator<DimProd<R1, R2>, DimProd<C1, C2>>,
    {
        let (nrows1, ncols1) = self.shape_generic();
        let (nrows2, ncols2) = rhs.shape_generic();

        let mut res = Matrix::uninit(nrows1.mul(nrows2), ncols1.mul(ncols2));
        let mut data_res = res.data.ptr_mut();

        unsafe {
            for j1 in 0..ncols1.value() {
                for j2 in 0..ncols2.value() {
                    for i1 in 0..nrows1.value() {
                        let coeff = self.get_unchecked((i1, j1)).clone();

                        for i2 in 0..nrows2.value() {
                            *data_res = MaybeUninit::new(
                                coeff.clone() * rhs.get_unchecked((i2, j2)).clone(),
                            );
                            data_res = data_res.offset(1);
                        }
                    }
                }
            }

            // SAFETY: the result matrix has been initialized by the loop above.
            res.assume_init()
        }
    }
}

impl<T, D: DimName> iter::Product for OMatrix<T, D, D>
where
    T: Scalar + Zero + One + ClosedMulAssign + ClosedAddAssign,
    DefaultAllocator: Allocator<D, D>,
{
    fn product<I: Iterator<Item = OMatrix<T, D, D>>>(iter: I) -> OMatrix<T, D, D> {
        iter.fold(Matrix::one(), |acc, x| acc * x)
    }
}

impl<'a, T, D: DimName> iter::Product<&'a OMatrix<T, D, D>> for OMatrix<T, D, D>
where
    T: Scalar + Zero + One + ClosedMulAssign + ClosedAddAssign,
    DefaultAllocator: Allocator<D, D>,
{
    fn product<I: Iterator<Item = &'a OMatrix<T, D, D>>>(iter: I) -> OMatrix<T, D, D> {
        iter.fold(Matrix::one(), |acc, x| acc * x)
    }
}