nalgebra/base/
vec_storage.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#[cfg(all(feature = "alloc", not(feature = "std")))]
use alloc::vec::Vec;

use crate::base::allocator::Allocator;
use crate::base::constraint::{SameNumberOfRows, ShapeConstraint};
use crate::base::default_allocator::DefaultAllocator;
use crate::base::dimension::{Dim, DimName, Dyn, U1};
use crate::base::storage::{IsContiguous, Owned, RawStorage, RawStorageMut, ReshapableStorage};
use crate::base::{Scalar, Vector};

#[cfg(feature = "serde-serialize-no-std")]
use serde::{
    de::{Deserialize, Deserializer, Error},
    ser::{Serialize, Serializer},
};

use crate::Storage;
use std::mem::MaybeUninit;

/*
 *
 * RawStorage.
 *
 */
/// A Vec-based matrix data storage. It may be dynamically-sized.
#[repr(C)]
#[derive(Eq, Debug, Clone, PartialEq)]
pub struct VecStorage<T, R: Dim, C: Dim> {
    data: Vec<T>,
    nrows: R,
    ncols: C,
}

impl<T> Default for VecStorage<T, Dyn, Dyn> {
    fn default() -> Self {
        Self {
            data: Vec::new(),
            nrows: Dyn::from_usize(0),
            ncols: Dyn::from_usize(0),
        }
    }
}

impl<T, R: DimName> Default for VecStorage<T, R, Dyn> {
    fn default() -> Self {
        Self {
            data: Vec::new(),
            nrows: R::name(),
            ncols: Dyn::from_usize(0),
        }
    }
}

impl<T, C: DimName> Default for VecStorage<T, Dyn, C> {
    fn default() -> Self {
        Self {
            data: Vec::new(),
            nrows: Dyn::from_usize(0),
            ncols: C::name(),
        }
    }
}

impl<T: Default, R: DimName, C: DimName> Default for VecStorage<T, R, C> {
    fn default() -> Self {
        let nrows = R::name();
        let ncols = C::name();
        let mut data = Vec::new();
        data.resize_with(nrows.value() * ncols.value(), Default::default);
        Self { data, nrows, ncols }
    }
}

#[cfg(feature = "serde-serialize")]
impl<T, R: Dim, C: Dim> Serialize for VecStorage<T, R, C>
where
    T: Serialize,
    R: Serialize,
    C: Serialize,
{
    fn serialize<Ser>(&self, serializer: Ser) -> Result<Ser::Ok, Ser::Error>
    where
        Ser: Serializer,
    {
        (&self.data, &self.nrows, &self.ncols).serialize(serializer)
    }
}

#[cfg(feature = "serde-serialize")]
impl<'a, T, R: Dim, C: Dim> Deserialize<'a> for VecStorage<T, R, C>
where
    T: Deserialize<'a>,
    R: Deserialize<'a>,
    C: Deserialize<'a>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: Deserializer<'a>,
    {
        let (data, nrows, ncols): (Vec<T>, R, C) = Deserialize::deserialize(deserializer)?;

        // SAFETY: make sure the data we deserialize have the
        //         correct number of elements.
        if nrows.value() * ncols.value() != data.len() {
            return Err(Des::Error::custom(format!(
                "Expected {} components, found {}",
                nrows.value() * ncols.value(),
                data.len()
            )));
        }

        Ok(Self { data, nrows, ncols })
    }
}

#[deprecated(note = "renamed to `VecStorage`")]
/// Renamed to [`VecStorage`].
pub type MatrixVec<T, R, C> = VecStorage<T, R, C>;

impl<T, R: Dim, C: Dim> VecStorage<T, R, C> {
    /// Creates a new dynamic matrix data storage from the given vector and shape.
    #[inline]
    pub fn new(nrows: R, ncols: C, data: Vec<T>) -> Self {
        assert!(
            nrows.value() * ncols.value() == data.len(),
            "Data storage buffer dimension mismatch."
        );
        Self { data, nrows, ncols }
    }

    /// The underlying data storage.
    #[inline]
    #[must_use]
    pub fn as_vec(&self) -> &Vec<T> {
        &self.data
    }

    /// The underlying mutable data storage.
    ///
    /// # Safety
    /// This is unsafe because this may cause UB if the size of the vector is changed
    /// by the user.
    #[inline]
    pub unsafe fn as_vec_mut(&mut self) -> &mut Vec<T> {
        &mut self.data
    }

    /// Resizes the underlying mutable data storage and unwraps it.
    ///
    /// # Safety
    /// - If `sz` is larger than the current size, additional elements are uninitialized.
    /// - If `sz` is smaller than the current size, additional elements are truncated but **not** dropped.
    ///   It is the responsibility of the caller of this method to drop these elements.
    #[inline]
    pub unsafe fn resize(mut self, sz: usize) -> Vec<MaybeUninit<T>> {
        let len = self.len();

        let new_data = if sz < len {
            // Use `set_len` instead of `truncate` because we don’t want to
            // drop the removed elements (it’s the caller’s responsibility).
            self.data.set_len(sz);
            self.data.shrink_to_fit();

            // Safety:
            // - MaybeUninit<T> has the same alignment and layout as T.
            // - The length and capacity come from a valid vector.
            Vec::from_raw_parts(
                self.data.as_mut_ptr() as *mut MaybeUninit<T>,
                self.data.len(),
                self.data.capacity(),
            )
        } else {
            self.data.reserve_exact(sz - len);

            // Safety:
            // - MaybeUninit<T> has the same alignment and layout as T.
            // - The length and capacity come from a valid vector.
            let mut new_data = Vec::from_raw_parts(
                self.data.as_mut_ptr() as *mut MaybeUninit<T>,
                self.data.len(),
                self.data.capacity(),
            );

            // Safety: we can set the length here because MaybeUninit is always assumed
            //         to be initialized.
            new_data.set_len(sz);
            new_data
        };

        // Avoid double-free by forgetting `self` because its data buffer has
        // been transferred to `new_data`.
        std::mem::forget(self);
        new_data
    }

    /// The number of elements on the underlying vector.
    #[inline]
    #[must_use]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Returns true if the underlying vector contains no elements.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// A slice containing all the components stored in this storage in column-major order.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        &self.data[..]
    }

    /// A mutable slice containing all the components stored in this storage in column-major order.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        &mut self.data[..]
    }
}

impl<T, R: Dim, C: Dim> From<VecStorage<T, R, C>> for Vec<T> {
    fn from(vec: VecStorage<T, R, C>) -> Self {
        vec.data
    }
}

/*
 *
 * Dyn − Static
 * Dyn − Dyn
 *
 */
unsafe impl<T, C: Dim> RawStorage<T, Dyn, C> for VecStorage<T, Dyn, C> {
    type RStride = U1;
    type CStride = Dyn;

    #[inline]
    fn ptr(&self) -> *const T {
        self.data.as_ptr()
    }

    #[inline]
    fn shape(&self) -> (Dyn, C) {
        (self.nrows, self.ncols)
    }

    #[inline]
    fn strides(&self) -> (Self::RStride, Self::CStride) {
        (Self::RStride::name(), self.nrows)
    }

    #[inline]
    fn is_contiguous(&self) -> bool {
        true
    }

    #[inline]
    unsafe fn as_slice_unchecked(&self) -> &[T] {
        &self.data
    }
}

unsafe impl<T: Scalar, C: Dim> Storage<T, Dyn, C> for VecStorage<T, Dyn, C>
where
    DefaultAllocator: Allocator<Dyn, C, Buffer<T> = Self>,
{
    #[inline]
    fn into_owned(self) -> Owned<T, Dyn, C>
    where
        DefaultAllocator: Allocator<Dyn, C>,
    {
        self
    }

    #[inline]
    fn clone_owned(&self) -> Owned<T, Dyn, C>
    where
        DefaultAllocator: Allocator<Dyn, C>,
    {
        self.clone()
    }

    #[inline]
    fn forget_elements(mut self) {
        // SAFETY: setting the length to zero is always sound, as it does not
        // cause any memory to be deemed initialized. If the previous length was
        // non-zero, it is equivalent to using mem::forget to leak each element.
        // Then, when this function returns, self.data is dropped, freeing the
        // allocated memory, but the elements are not dropped because they are
        // now considered uninitialized.
        unsafe { self.data.set_len(0) };
    }
}

unsafe impl<T, R: DimName> RawStorage<T, R, Dyn> for VecStorage<T, R, Dyn> {
    type RStride = U1;
    type CStride = R;

    #[inline]
    fn ptr(&self) -> *const T {
        self.data.as_ptr()
    }

    #[inline]
    fn shape(&self) -> (R, Dyn) {
        (self.nrows, self.ncols)
    }

    #[inline]
    fn strides(&self) -> (Self::RStride, Self::CStride) {
        (Self::RStride::name(), self.nrows)
    }

    #[inline]
    fn is_contiguous(&self) -> bool {
        true
    }

    #[inline]
    unsafe fn as_slice_unchecked(&self) -> &[T] {
        &self.data
    }
}

unsafe impl<T: Scalar, R: DimName> Storage<T, R, Dyn> for VecStorage<T, R, Dyn>
where
    DefaultAllocator: Allocator<R, Dyn, Buffer<T> = Self>,
{
    #[inline]
    fn into_owned(self) -> Owned<T, R, Dyn>
    where
        DefaultAllocator: Allocator<R, Dyn>,
    {
        self
    }

    #[inline]
    fn clone_owned(&self) -> Owned<T, R, Dyn>
    where
        DefaultAllocator: Allocator<R, Dyn>,
    {
        self.clone()
    }

    #[inline]
    fn forget_elements(mut self) {
        // SAFETY: setting the length to zero is always sound, as it does not
        // cause any memory to be deemed initialized. If the previous length was
        // non-zero, it is equivalent to using mem::forget to leak each element.
        // Then, when this function returns, self.data is dropped, freeing the
        // allocated memory, but the elements are not dropped because they are
        // now considered uninitialized.
        unsafe { self.data.set_len(0) };
    }
}

/*
 *
 * RawStorageMut, ContiguousStorage.
 *
 */
unsafe impl<T, C: Dim> RawStorageMut<T, Dyn, C> for VecStorage<T, Dyn, C> {
    #[inline]
    fn ptr_mut(&mut self) -> *mut T {
        self.data.as_mut_ptr()
    }

    #[inline]
    unsafe fn as_mut_slice_unchecked(&mut self) -> &mut [T] {
        &mut self.data[..]
    }
}

unsafe impl<T, R: Dim, C: Dim> IsContiguous for VecStorage<T, R, C> {}

impl<T, C1, C2> ReshapableStorage<T, Dyn, C1, Dyn, C2> for VecStorage<T, Dyn, C1>
where
    T: Scalar,
    C1: Dim,
    C2: Dim,
{
    type Output = VecStorage<T, Dyn, C2>;

    fn reshape_generic(self, nrows: Dyn, ncols: C2) -> Self::Output {
        assert_eq!(nrows.value() * ncols.value(), self.data.len());
        VecStorage {
            data: self.data,
            nrows,
            ncols,
        }
    }
}

impl<T, C1, R2> ReshapableStorage<T, Dyn, C1, R2, Dyn> for VecStorage<T, Dyn, C1>
where
    T: Scalar,
    C1: Dim,
    R2: DimName,
{
    type Output = VecStorage<T, R2, Dyn>;

    fn reshape_generic(self, nrows: R2, ncols: Dyn) -> Self::Output {
        assert_eq!(nrows.value() * ncols.value(), self.data.len());
        VecStorage {
            data: self.data,
            nrows,
            ncols,
        }
    }
}

unsafe impl<T, R: DimName> RawStorageMut<T, R, Dyn> for VecStorage<T, R, Dyn> {
    #[inline]
    fn ptr_mut(&mut self) -> *mut T {
        self.data.as_mut_ptr()
    }

    #[inline]
    unsafe fn as_mut_slice_unchecked(&mut self) -> &mut [T] {
        &mut self.data[..]
    }
}

impl<T, R1, C2> ReshapableStorage<T, R1, Dyn, Dyn, C2> for VecStorage<T, R1, Dyn>
where
    T: Scalar,
    R1: DimName,
    C2: Dim,
{
    type Output = VecStorage<T, Dyn, C2>;

    fn reshape_generic(self, nrows: Dyn, ncols: C2) -> Self::Output {
        assert_eq!(nrows.value() * ncols.value(), self.data.len());
        VecStorage {
            data: self.data,
            nrows,
            ncols,
        }
    }
}

impl<T, R1, R2> ReshapableStorage<T, R1, Dyn, R2, Dyn> for VecStorage<T, R1, Dyn>
where
    T: Scalar,
    R1: DimName,
    R2: DimName,
{
    type Output = VecStorage<T, R2, Dyn>;

    fn reshape_generic(self, nrows: R2, ncols: Dyn) -> Self::Output {
        assert_eq!(nrows.value() * ncols.value(), self.data.len());
        VecStorage {
            data: self.data,
            nrows,
            ncols,
        }
    }
}

impl<T, R: Dim> Extend<T> for VecStorage<T, R, Dyn> {
    /// Extends the number of columns of the `VecStorage` with elements
    /// from the given iterator.
    ///
    /// # Panics
    /// This function panics if the number of elements yielded by the
    /// given iterator is not a multiple of the number of rows of the
    /// `VecStorage`.
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.data.extend(iter);
        self.ncols = Dyn(self.data.len() / self.nrows.value());
        assert!(self.data.len() % self.nrows.value() == 0,
          "The number of elements produced by the given iterator was not a multiple of the number of rows.");
    }
}

impl<'a, T: 'a + Copy, R: Dim> Extend<&'a T> for VecStorage<T, R, Dyn> {
    /// Extends the number of columns of the `VecStorage` with elements
    /// from the given iterator.
    ///
    /// # Panics
    /// This function panics if the number of elements yielded by the
    /// given iterator is not a multiple of the number of rows of the
    /// `VecStorage`.
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().copied())
    }
}

impl<T, R, RV, SV> Extend<Vector<T, RV, SV>> for VecStorage<T, R, Dyn>
where
    T: Scalar,
    R: Dim,
    RV: Dim,
    SV: RawStorage<T, RV>,
    ShapeConstraint: SameNumberOfRows<R, RV>,
{
    /// Extends the number of columns of the `VecStorage` with vectors
    /// from the given iterator.
    ///
    /// # Panics
    /// This function panics if the number of rows of each `Vector`
    /// yielded by the iterator is not equal to the number of rows
    /// of this `VecStorage`.
    fn extend<I: IntoIterator<Item = Vector<T, RV, SV>>>(&mut self, iter: I) {
        let nrows = self.nrows.value();
        let iter = iter.into_iter();
        let (lower, _upper) = iter.size_hint();
        self.data.reserve(nrows * lower);
        for vector in iter {
            assert_eq!(nrows, vector.shape().0);
            self.data.extend(vector.iter().cloned());
        }
        self.ncols = Dyn(self.data.len() / nrows);
    }
}

impl<T> Extend<T> for VecStorage<T, Dyn, U1> {
    /// Extends the number of rows of the `VecStorage` with elements
    /// from the given iterator.
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        self.data.extend(iter);
        self.nrows = Dyn(self.data.len());
    }
}