1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use std::fmt;
use std::hash;

#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};

use simba::scalar::{RealField, SubsetOf};
use simba::simd::SimdRealField;

use crate::base::allocator::Allocator;
use crate::base::dimension::{DimNameAdd, DimNameSum, U1};
use crate::base::storage::Owned;
use crate::base::{Const, DefaultAllocator, OMatrix, SVector, Scalar, Unit};
use crate::geometry::{AbstractRotation, Point, Translation};

use crate::{Isometry3, Quaternion, Vector3, Vector4};

#[cfg(feature = "rkyv-serialize")]
use rkyv::bytecheck;

/// A direct isometry, i.e., a rotation followed by a translation (aka. a rigid-body motion).
///
/// This is also known as an element of a Special Euclidean (SE) group.
/// The `Isometry` type can either represent a 2D or 3D isometry.
/// A 2D isometry is composed of:
/// - A translation part of type [`Translation2`](crate::Translation2)
/// - A rotation part which can either be a [`UnitComplex`](crate::UnitComplex) or a [`Rotation2`](crate::Rotation2).
///
/// A 3D isometry is composed of:
/// - A translation part of type [`Translation3`](crate::Translation3)
/// - A rotation part which can either be a [`UnitQuaternion`](crate::UnitQuaternion) or a [`Rotation3`](crate::Rotation3).
///
/// Note that instead of using the [`Isometry`](crate::Isometry) type in your code directly, you should use one
/// of its aliases: [`Isometry2`](crate::Isometry2), [`Isometry3`](crate::Isometry3),
/// [`IsometryMatrix2`](crate::IsometryMatrix2), [`IsometryMatrix3`](crate::IsometryMatrix3). Though
/// keep in mind that all the documentation of all the methods of these aliases will also appears on
/// this page.
///
/// # Construction
/// * [From a 2D vector and/or an angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-2d-vector-andor-a-rotation-angle)
/// * [From a 3D vector and/or an axis-angle <span style="float:right;">`new`, `translation`, `rotation`…</span>](#construction-from-a-3d-vector-andor-an-axis-angle)
/// * [From a 3D eye position and target point <span style="float:right;">`look_at`, `look_at_lh`, `face_towards`…</span>](#construction-from-a-3d-eye-position-and-target-point)
/// * [From the translation and rotation parts <span style="float:right;">`from_parts`…</span>](#from-the-translation-and-rotation-parts)
///
/// # Transformation and composition
/// Note that transforming vectors and points can be done by multiplication, e.g., `isometry * point`.
/// Composing an isometry with another transformation can also be done by multiplication or division.
///
/// * [Transformation of a vector or a point <span style="float:right;">`transform_vector`, `inverse_transform_point`…</span>](#transformation-of-a-vector-or-a-point)
/// * [Inversion and in-place composition <span style="float:right;">`inverse`, `append_rotation_wrt_point_mut`…</span>](#inversion-and-in-place-composition)
/// * [Interpolation <span style="float:right;">`lerp_slerp`…</span>](#interpolation)
///
/// # Conversion to a matrix
/// * [Conversion to a matrix <span style="float:right;">`to_matrix`…</span>](#conversion-to-a-matrix)
///
#[repr(C)]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(serialize = "R: Serialize,
                     DefaultAllocator: Allocator<Const<D>>,
                     Owned<T, Const<D>>: Serialize,
                     T: Scalar"))
)]
#[cfg_attr(
    feature = "serde-serialize-no-std",
    serde(bound(deserialize = "R: Deserialize<'de>,
                       DefaultAllocator: Allocator<Const<D>>,
                       Owned<T, Const<D>>: Deserialize<'de>,
                       T: Scalar"))
)]
#[cfg_attr(feature = "rkyv-serialize", derive(bytecheck::CheckBytes))]
#[cfg_attr(
    feature = "rkyv-serialize-no-std",
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize),
    archive(
        as = "Isometry<T::Archived, R::Archived, D>",
        bound(archive = "
        T: rkyv::Archive,
        R: rkyv::Archive,
        Translation<T, D>: rkyv::Archive<Archived = Translation<T::Archived, D>>
    ")
    )
)]
pub struct Isometry<T, R, const D: usize> {
    /// The pure rotational part of this isometry.
    pub rotation: R,
    /// The pure translational part of this isometry.
    pub translation: Translation<T, D>,
}

impl<T: Scalar + hash::Hash, R: hash::Hash, const D: usize> hash::Hash for Isometry<T, R, D>
where
    Owned<T, Const<D>>: hash::Hash,
{
    fn hash<H: hash::Hasher>(&self, state: &mut H) {
        self.translation.hash(state);
        self.rotation.hash(state);
    }
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, R, const D: usize> bytemuck::Zeroable for Isometry<T, R, D>
where
    SVector<T, D>: bytemuck::Zeroable,
    R: bytemuck::Zeroable,
{
}

#[cfg(feature = "bytemuck")]
unsafe impl<T: Scalar, R, const D: usize> bytemuck::Pod for Isometry<T, R, D>
where
    SVector<T, D>: bytemuck::Pod,
    R: bytemuck::Pod,
    T: Copy,
{
}

/// # From the translation and rotation parts
impl<T: Scalar, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D> {
    /// Creates a new isometry from its rotational and translational parts.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn from_parts(translation: Translation<T, D>, rotation: R) -> Self {
        Self {
            rotation,
            translation,
        }
    }
}

/// # Inversion and in-place composition
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
    T::Element: SimdRealField,
{
    /// Inverts `self`.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Point2, Vector2};
    /// let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let inv = iso.inverse();
    /// let pt = Point2::new(1.0, 2.0);
    ///
    /// assert_eq!(inv * (iso * pt), pt);
    /// ```
    #[inline]
    #[must_use = "Did you mean to use inverse_mut()?"]
    pub fn inverse(&self) -> Self {
        let mut res = self.clone();
        res.inverse_mut();
        res
    }

    /// Inverts `self` in-place.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Point2, Vector2};
    /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let pt = Point2::new(1.0, 2.0);
    /// let transformed_pt = iso * pt;
    /// iso.inverse_mut();
    ///
    /// assert_eq!(iso * transformed_pt, pt);
    /// ```
    #[inline]
    pub fn inverse_mut(&mut self) {
        self.rotation.inverse_mut();
        self.translation.inverse_mut();
        self.translation.vector = self.rotation.transform_vector(&self.translation.vector);
    }

    /// Computes `self.inverse() * rhs` in a more efficient way.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Point2, Vector2};
    /// let mut iso1 = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let mut iso2 = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_4);
    ///
    /// assert_eq!(iso1.inverse() * iso2, iso1.inv_mul(&iso2));
    /// ```
    #[inline]
    #[must_use]
    pub fn inv_mul(&self, rhs: &Isometry<T, R, D>) -> Self {
        let inv_rot1 = self.rotation.inverse();
        let tr_12 = &rhs.translation.vector - &self.translation.vector;
        Isometry::from_parts(
            inv_rot1.transform_vector(&tr_12).into(),
            inv_rot1 * rhs.rotation.clone(),
        )
    }

    /// Appends to `self` the given translation in-place.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Translation2, Vector2};
    /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let tra = Translation2::new(3.0, 4.0);
    /// // Same as `iso = tra * iso`.
    /// iso.append_translation_mut(&tra);
    ///
    /// assert_eq!(iso.translation, Translation2::new(4.0, 6.0));
    /// ```
    #[inline]
    pub fn append_translation_mut(&mut self, t: &Translation<T, D>) {
        self.translation.vector += &t.vector
    }

    /// Appends to `self` the given rotation in-place.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2};
    /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
    /// let rot = UnitComplex::new(f32::consts::PI / 2.0);
    /// // Same as `iso = rot * iso`.
    /// iso.append_rotation_mut(&rot);
    ///
    /// assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn append_rotation_mut(&mut self, r: &R) {
        self.rotation = r.clone() * self.rotation.clone();
        self.translation.vector = r.transform_vector(&self.translation.vector);
    }

    /// Appends in-place to `self` a rotation centered at the point `p`, i.e., the rotation that
    /// lets `p` invariant.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
    /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let pt = Point2::new(1.0, 0.0);
    /// iso.append_rotation_wrt_point_mut(&rot, &pt);
    ///
    /// assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<T, D>) {
        self.translation.vector -= &p.coords;
        self.append_rotation_mut(r);
        self.translation.vector += &p.coords;
    }

    /// Appends in-place to `self` a rotation centered at the point with coordinates
    /// `self.translation`.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Translation2, UnitComplex, Vector2, Point2};
    /// let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// iso.append_rotation_wrt_center_mut(&rot);
    ///
    /// // The translation part should not have changed.
    /// assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
    /// assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));
    /// ```
    #[inline]
    pub fn append_rotation_wrt_center_mut(&mut self, r: &R) {
        self.rotation = r.clone() * self.rotation.clone();
    }
}

/// # Transformation of a vector or a point
impl<T: SimdRealField, R: AbstractRotation<T, D>, const D: usize> Isometry<T, R, D>
where
    T::Element: SimdRealField,
{
    /// Transform the given point by this isometry.
    ///
    /// This is the same as the multiplication `self * pt`.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
    /// assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
        self * pt
    }

    /// Transform the given vector by this isometry, ignoring the translation
    /// component of the isometry.
    ///
    /// This is the same as the multiplication `self * v`.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
    /// assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
        self * v
    }

    /// Transform the given point by the inverse of this isometry. This may be
    /// less expensive than computing the entire isometry inverse and then
    /// transforming the point.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3, Point3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
    /// assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_point(&self, pt: &Point<T, D>) -> Point<T, D> {
        self.rotation
            .inverse_transform_point(&(pt - &self.translation.vector))
    }

    /// Transform the given vector by the inverse of this isometry, ignoring the
    /// translation component of the isometry. This may be
    /// less expensive than computing the entire isometry inverse and then
    /// transforming the point.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
    /// assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
        self.rotation.inverse_transform_vector(v)
    }

    /// Transform the given unit vector by the inverse of this isometry, ignoring the
    /// translation component of the isometry. This may be
    /// less expensive than computing the entire isometry inverse and then
    /// transforming the point.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry3, Translation3, UnitQuaternion, Vector3};
    /// let tra = Translation3::new(0.0, 0.0, 3.0);
    /// let rot = UnitQuaternion::from_scaled_axis(Vector3::z() * f32::consts::FRAC_PI_2);
    /// let iso = Isometry3::from_parts(tra, rot);
    ///
    /// let transformed_point = iso.inverse_transform_unit_vector(&Vector3::x_axis());
    /// assert_relative_eq!(transformed_point, -Vector3::y_axis(), epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
        self.rotation.inverse_transform_unit_vector(v)
    }
}

// NOTE: we don't require `R: Rotation<...>` here because this is not useful for the implementation
// and makes it hard to use it, e.g., for Transform × Isometry implementation.
// This is OK since all constructors of the isometry enforce the Rotation bound already (and
// explicit struct construction is prevented by the dummy ZST field).
/// # Conversion to a matrix
impl<T: SimdRealField, R, const D: usize> Isometry<T, R, D> {
    /// Converts this isometry into its equivalent homogeneous transformation matrix.
    ///
    /// This is the same as `self.to_matrix()`.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Vector2, Matrix3};
    /// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
    /// let expected = Matrix3::new(0.8660254, -0.5,      10.0,
    ///                             0.5,       0.8660254, 20.0,
    ///                             0.0,       0.0,       1.0);
    ///
    /// assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn to_homogeneous(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
    where
        Const<D>: DimNameAdd<U1>,
        R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
        DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
    {
        let mut res: OMatrix<T, _, _> = crate::convert_ref(&self.rotation);
        res.fixed_view_mut::<D, 1>(0, D)
            .copy_from(&self.translation.vector);

        res
    }

    /// Converts this isometry into its equivalent homogeneous transformation matrix.
    ///
    /// This is the same as `self.to_homogeneous()`.
    ///
    /// # Example
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Isometry2, Vector2, Matrix3};
    /// let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
    /// let expected = Matrix3::new(0.8660254, -0.5,      10.0,
    ///                             0.5,       0.8660254, 20.0,
    ///                             0.0,       0.0,       1.0);
    ///
    /// assert_relative_eq!(iso.to_matrix(), expected, epsilon = 1.0e-6);
    /// ```
    #[inline]
    #[must_use]
    pub fn to_matrix(&self) -> OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
    where
        Const<D>: DimNameAdd<U1>,
        R: SubsetOf<OMatrix<T, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>>,
        DefaultAllocator: Allocator<DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
    {
        self.to_homogeneous()
    }
}

impl<T: SimdRealField, R, const D: usize> Eq for Isometry<T, R, D> where
    R: AbstractRotation<T, D> + Eq
{
}

impl<T: SimdRealField, R, const D: usize> PartialEq for Isometry<T, R, D>
where
    R: AbstractRotation<T, D> + PartialEq,
{
    #[inline]
    fn eq(&self, right: &Self) -> bool {
        self.translation == right.translation && self.rotation == right.rotation
    }
}

impl<T: RealField, R, const D: usize> AbsDiffEq for Isometry<T, R, D>
where
    R: AbstractRotation<T, D> + AbsDiffEq<Epsilon = T::Epsilon>,
    T::Epsilon: Clone,
{
    type Epsilon = T::Epsilon;

    #[inline]
    fn default_epsilon() -> Self::Epsilon {
        T::default_epsilon()
    }

    #[inline]
    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        self.translation
            .abs_diff_eq(&other.translation, epsilon.clone())
            && self.rotation.abs_diff_eq(&other.rotation, epsilon)
    }
}

impl<T: RealField, R, const D: usize> RelativeEq for Isometry<T, R, D>
where
    R: AbstractRotation<T, D> + RelativeEq<Epsilon = T::Epsilon>,
    T::Epsilon: Clone,
{
    #[inline]
    fn default_max_relative() -> Self::Epsilon {
        T::default_max_relative()
    }

    #[inline]
    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        self.translation
            .relative_eq(&other.translation, epsilon.clone(), max_relative.clone())
            && self
                .rotation
                .relative_eq(&other.rotation, epsilon, max_relative)
    }
}

impl<T: RealField, R, const D: usize> UlpsEq for Isometry<T, R, D>
where
    R: AbstractRotation<T, D> + UlpsEq<Epsilon = T::Epsilon>,
    T::Epsilon: Clone,
{
    #[inline]
    fn default_max_ulps() -> u32 {
        T::default_max_ulps()
    }

    #[inline]
    fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
        self.translation
            .ulps_eq(&other.translation, epsilon.clone(), max_ulps)
            && self.rotation.ulps_eq(&other.rotation, epsilon, max_ulps)
    }
}

/*
 *
 * Display
 *
 */
impl<T: RealField + fmt::Display, R, const D: usize> fmt::Display for Isometry<T, R, D>
where
    R: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let precision = f.precision().unwrap_or(3);

        writeln!(f, "Isometry {{")?;
        write!(f, "{:.*}", precision, self.translation)?;
        write!(f, "{:.*}", precision, self.rotation)?;
        writeln!(f, "}}")
    }
}