1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use crate::{Isometry2, Isometry3, IsometryMatrix2, IsometryMatrix3, RealField, SimdRealField};

/// # Interpolation
impl<T: SimdRealField> Isometry3<T> {
    /// Interpolates between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion};
    ///
    /// let t1 = Translation3::new(1.0, 2.0, 3.0);
    /// let t2 = Translation3::new(4.0, 8.0, 12.0);
    /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
    /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
    /// let iso1 = Isometry3::from_parts(t1, q1);
    /// let iso2 = Isometry3::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
    /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp_slerp(&self, other: &Self, t: T) -> Self
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.slerp(&other.rotation, t);
        Self::from_parts(tr.into(), rot)
    }

    /// Attempts to interpolate between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Returns `None` if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined).
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, Translation3, Isometry3, UnitQuaternion};
    ///
    /// let t1 = Translation3::new(1.0, 2.0, 3.0);
    /// let t2 = Translation3::new(4.0, 8.0, 12.0);
    /// let q1 = UnitQuaternion::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
    /// let q2 = UnitQuaternion::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
    /// let iso1 = Isometry3::from_parts(t1, q1);
    /// let iso2 = Isometry3::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
    /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
    /// ```
    #[inline]
    #[must_use]
    pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
        Some(Self::from_parts(tr.into(), rot))
    }
}

impl<T: SimdRealField> IsometryMatrix3<T> {
    /// Interpolates between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3};
    ///
    /// let t1 = Translation3::new(1.0, 2.0, 3.0);
    /// let t2 = Translation3::new(4.0, 8.0, 12.0);
    /// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
    /// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
    /// let iso1 = IsometryMatrix3::from_parts(t1, q1);
    /// let iso2 = IsometryMatrix3::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
    /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp_slerp(&self, other: &Self, t: T) -> Self
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.slerp(&other.rotation, t);
        Self::from_parts(tr.into(), rot)
    }

    /// Attempts to interpolate between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Returns `None` if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined).
    ///
    /// # Examples:
    ///
    /// ```
    /// # use nalgebra::{Vector3, Translation3, Rotation3, IsometryMatrix3};
    ///
    /// let t1 = Translation3::new(1.0, 2.0, 3.0);
    /// let t2 = Translation3::new(4.0, 8.0, 12.0);
    /// let q1 = Rotation3::from_euler_angles(std::f32::consts::FRAC_PI_4, 0.0, 0.0);
    /// let q2 = Rotation3::from_euler_angles(-std::f32::consts::PI, 0.0, 0.0);
    /// let iso1 = IsometryMatrix3::from_parts(t1, q1);
    /// let iso2 = IsometryMatrix3::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector3::new(2.0, 4.0, 6.0));
    /// assert_eq!(iso3.rotation.euler_angles(), (std::f32::consts::FRAC_PI_2, 0.0, 0.0));
    /// ```
    #[inline]
    #[must_use]
    pub fn try_lerp_slerp(&self, other: &Self, t: T, epsilon: T) -> Option<Self>
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.try_slerp(&other.rotation, t, epsilon)?;
        Some(Self::from_parts(tr.into(), rot))
    }
}

impl<T: SimdRealField> Isometry2<T> {
    /// Interpolates between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Vector2, Translation2, UnitComplex, Isometry2};
    ///
    /// let t1 = Translation2::new(1.0, 2.0);
    /// let t2 = Translation2::new(4.0, 8.0);
    /// let q1 = UnitComplex::new(std::f32::consts::FRAC_PI_4);
    /// let q2 = UnitComplex::new(-std::f32::consts::PI);
    /// let iso1 = Isometry2::from_parts(t1, q1);
    /// let iso2 = Isometry2::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
    /// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp_slerp(&self, other: &Self, t: T) -> Self
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.slerp(&other.rotation, t);
        Self::from_parts(tr.into(), rot)
    }
}

impl<T: SimdRealField> IsometryMatrix2<T> {
    /// Interpolates between two isometries using a linear interpolation for the translation part,
    /// and a spherical interpolation for the rotation part.
    ///
    /// Panics if the angle between both rotations is 180 degrees (in which case the interpolation
    /// is not well-defined). Use `.try_lerp_slerp` instead to avoid the panic.
    ///
    /// # Examples:
    ///
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use nalgebra::{Vector2, Translation2, Rotation2, IsometryMatrix2};
    ///
    /// let t1 = Translation2::new(1.0, 2.0);
    /// let t2 = Translation2::new(4.0, 8.0);
    /// let q1 = Rotation2::new(std::f32::consts::FRAC_PI_4);
    /// let q2 = Rotation2::new(-std::f32::consts::PI);
    /// let iso1 = IsometryMatrix2::from_parts(t1, q1);
    /// let iso2 = IsometryMatrix2::from_parts(t2, q2);
    ///
    /// let iso3 = iso1.lerp_slerp(&iso2, 1.0 / 3.0);
    ///
    /// assert_eq!(iso3.translation.vector, Vector2::new(2.0, 4.0));
    /// assert_relative_eq!(iso3.rotation.angle(), std::f32::consts::FRAC_PI_2);
    /// ```
    #[inline]
    #[must_use]
    pub fn lerp_slerp(&self, other: &Self, t: T) -> Self
    where
        T: RealField,
    {
        let tr = self
            .translation
            .vector
            .lerp(&other.translation.vector, t.clone());
        let rot = self.rotation.slerp(&other.rotation, t);
        Self::from_parts(tr.into(), rot)
    }
}