1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};
use num::Zero;
#[cfg(feature = "rand-no-std")]
use rand::{
distributions::{uniform::SampleUniform, Distribution, OpenClosed01, Standard, Uniform},
Rng,
};
use simba::scalar::RealField;
use simba::simd::{SimdBool, SimdRealField};
use std::ops::Neg;
use crate::base::dimension::{U1, U2, U3};
use crate::base::storage::Storage;
use crate::base::{
Matrix2, Matrix3, SMatrix, SVector, Unit, UnitVector3, Vector, Vector1, Vector2, Vector3,
};
use crate::geometry::{Rotation2, Rotation3, UnitComplex, UnitQuaternion};
/*
*
* 2D Rotation matrix.
*
*/
/// # Construction from a 2D rotation angle
impl<T: SimdRealField> Rotation2<T> {
/// Builds a 2 dimensional rotation matrix from an angle in radian.
///
/// # Example
///
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation2, Point2};
/// let rot = Rotation2::new(f32::consts::FRAC_PI_2);
///
/// assert_relative_eq!(rot * Point2::new(3.0, 4.0), Point2::new(-4.0, 3.0));
/// ```
pub fn new(angle: T) -> Self {
let (sia, coa) = angle.simd_sin_cos();
Self::from_matrix_unchecked(Matrix2::new(coa.clone(), -sia.clone(), sia, coa))
}
/// Builds a 2 dimensional rotation matrix from an angle in radian wrapped in a 1-dimensional vector.
///
///
/// This is generally used in the context of generic programming. Using
/// the `::new(angle)` method instead is more common.
#[inline]
pub fn from_scaled_axis<SB: Storage<T, U1>>(axisangle: Vector<T, U1, SB>) -> Self {
Self::new(axisangle[0].clone())
}
}
/// # Construction from an existing 2D matrix or rotations
impl<T: SimdRealField> Rotation2<T> {
/// Builds a rotation from a basis assumed to be orthonormal.
///
/// In order to get a valid rotation matrix, the input must be an
/// orthonormal basis, i.e., all vectors are normalized, and the are
/// all orthogonal to each other. These invariants are not checked
/// by this method.
pub fn from_basis_unchecked(basis: &[Vector2<T>; 2]) -> Self {
let mat = Matrix2::from_columns(&basis[..]);
Self::from_matrix_unchecked(mat)
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix2<T>) -> Self
where
T: RealField,
{
Self::from_matrix_eps(m, T::default_epsilon(), 0, Self::identity())
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: an estimate of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `Rotation2::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix2<T>, eps: T, mut max_iter: usize, guess: Self) -> Self
where
T: RealField,
{
if max_iter == 0 {
max_iter = usize::max_value();
}
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).perp(&m.column(0)) + rot.column(1).perp(&m.column(1));
let denom = rot.column(0).dot(&m.column(0)) + rot.column(1).dot(&m.column(1));
let angle = axis / (denom.abs() + T::default_epsilon());
if angle.clone().abs() > eps {
rot = Self::new(angle) * rot;
} else {
break;
}
}
Self::from_matrix_unchecked(rot)
}
/// The rotation matrix required to align `a` and `b` but with its angle.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, Rotation2};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot = Rotation2::rotation_between(&a, &b);
/// assert_relative_eq!(rot * a, b);
/// assert_relative_eq!(rot.inverse() * b, a);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<T, U2, SB>, b: &Vector<T, U2, SC>) -> Self
where
T: RealField,
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
crate::convert(UnitComplex::rotation_between(a, b).to_rotation_matrix())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector2, Rotation2};
/// let a = Vector2::new(1.0, 2.0);
/// let b = Vector2::new(2.0, 1.0);
/// let rot2 = Rotation2::scaled_rotation_between(&a, &b, 0.2);
/// let rot5 = Rotation2::scaled_rotation_between(&a, &b, 0.5);
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U2, SB>,
b: &Vector<T, U2, SC>,
s: T,
) -> Self
where
T: RealField,
SB: Storage<T, U2>,
SC: Storage<T, U2>,
{
crate::convert(UnitComplex::scaled_rotation_between(a, b, s).to_rotation_matrix())
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot1 = Rotation2::new(0.1);
/// let rot2 = Rotation2::new(1.7);
/// let rot_to = rot1.rotation_to(&rot2);
///
/// assert_relative_eq!(rot_to * rot1, rot2);
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
/// ```
#[inline]
#[must_use]
pub fn rotation_to(&self, other: &Self) -> Self {
other * self.inverse()
}
/// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
/// computations might cause the matrix from progressively not being orthonormal anymore.
#[inline]
pub fn renormalize(&mut self)
where
T: RealField,
{
let mut c = UnitComplex::from(self.clone());
let _ = c.renormalize();
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
}
/// Raise the rotation to a given floating power, i.e., returns the rotation with the angle
/// of `self` multiplied by `n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot = Rotation2::new(0.78);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
/// ```
#[inline]
#[must_use]
pub fn powf(&self, n: T) -> Self {
Self::new(self.angle() * n)
}
}
/// # 2D angle extraction
impl<T: SimdRealField> Rotation2<T> {
/// The rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot = Rotation2::new(1.78);
/// assert_relative_eq!(rot.angle(), 1.78);
/// ```
#[inline]
#[must_use]
pub fn angle(&self) -> T {
self.matrix()[(1, 0)]
.clone()
.simd_atan2(self.matrix()[(0, 0)].clone())
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation2;
/// let rot1 = Rotation2::new(0.1);
/// let rot2 = Rotation2::new(1.7);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
/// ```
#[inline]
#[must_use]
pub fn angle_to(&self, other: &Self) -> T {
self.rotation_to(other).angle()
}
/// The rotation angle returned as a 1-dimensional vector.
///
/// This is generally used in the context of generic programming. Using
/// the `.angle()` method instead is more common.
#[inline]
#[must_use]
pub fn scaled_axis(&self) -> SVector<T, 1> {
Vector1::new(self.angle())
}
}
#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<Rotation2<T>> for Standard
where
T::Element: SimdRealField,
T: SampleUniform,
{
/// Generate a uniformly distributed random rotation.
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Rotation2<T> {
let twopi = Uniform::new(T::zero(), T::simd_two_pi());
Rotation2::new(rng.sample(twopi))
}
}
#[cfg(feature = "arbitrary")]
impl<T: SimdRealField + Arbitrary> Arbitrary for Rotation2<T>
where
T::Element: SimdRealField,
Owned<T, U2, U2>: Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
Self::new(T::arbitrary(g))
}
}
/*
*
* 3D Rotation matrix.
*
*/
/// # Construction from a 3D axis and/or angles
impl<T: SimdRealField> Rotation3<T>
where
T::Element: SimdRealField,
{
/// Builds a 3 dimensional rotation matrix from an axis and an angle.
///
/// # Arguments
/// * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
/// in radian. Its direction is the axis of rotation.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let rot = Rotation3::new(axisangle);
///
/// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(Rotation3::new(Vector3::<f32>::zeros()), Rotation3::identity());
/// ```
pub fn new<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self {
let axisangle = axisangle.into_owned();
let (axis, angle) = Unit::new_and_get(axisangle);
Self::from_axis_angle(&axis, angle)
}
/// Builds a 3D rotation matrix from an axis scaled by the rotation angle.
///
/// This is the same as `Self::new(axisangle)`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Point3, Vector3};
/// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let rot = Rotation3::new(axisangle);
///
/// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
/// ```
pub fn from_scaled_axis<SB: Storage<T, U3>>(axisangle: Vector<T, U3, SB>) -> Self {
Self::new(axisangle)
}
/// Builds a 3D rotation matrix from an axis and a rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Point3, Vector3};
/// let axis = Vector3::y_axis();
/// let angle = f32::consts::FRAC_PI_2;
/// // Point and vector being transformed in the tests.
/// let pt = Point3::new(4.0, 5.0, 6.0);
/// let vec = Vector3::new(4.0, 5.0, 6.0);
/// let rot = Rotation3::from_axis_angle(&axis, angle);
///
/// assert_eq!(rot.axis().unwrap(), axis);
/// assert_eq!(rot.angle(), angle);
/// assert_relative_eq!(rot * pt, Point3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
/// assert_relative_eq!(rot * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);
///
/// // A zero vector yields an identity.
/// assert_eq!(Rotation3::from_scaled_axis(Vector3::<f32>::zeros()), Rotation3::identity());
/// ```
pub fn from_axis_angle<SB>(axis: &Unit<Vector<T, U3, SB>>, angle: T) -> Self
where
SB: Storage<T, U3>,
{
angle.clone().simd_ne(T::zero()).if_else(
|| {
let ux = axis.as_ref()[0].clone();
let uy = axis.as_ref()[1].clone();
let uz = axis.as_ref()[2].clone();
let sqx = ux.clone() * ux.clone();
let sqy = uy.clone() * uy.clone();
let sqz = uz.clone() * uz.clone();
let (sin, cos) = angle.simd_sin_cos();
let one_m_cos = T::one() - cos.clone();
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
sqx.clone() + (T::one() - sqx) * cos.clone(),
ux.clone() * uy.clone() * one_m_cos.clone() - uz.clone() * sin.clone(),
ux.clone() * uz.clone() * one_m_cos.clone() + uy.clone() * sin.clone(),
ux.clone() * uy.clone() * one_m_cos.clone() + uz.clone() * sin.clone(),
sqy.clone() + (T::one() - sqy) * cos.clone(),
uy.clone() * uz.clone() * one_m_cos.clone() - ux.clone() * sin.clone(),
ux.clone() * uz.clone() * one_m_cos.clone() - uy.clone() * sin.clone(),
uy * uz * one_m_cos + ux * sin,
sqz.clone() + (T::one() - sqz) * cos,
))
},
Self::identity,
)
}
/// Creates a new rotation from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation3;
/// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
pub fn from_euler_angles(roll: T, pitch: T, yaw: T) -> Self {
let (sr, cr) = roll.simd_sin_cos();
let (sp, cp) = pitch.simd_sin_cos();
let (sy, cy) = yaw.simd_sin_cos();
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
cy.clone() * cp.clone(),
cy.clone() * sp.clone() * sr.clone() - sy.clone() * cr.clone(),
cy.clone() * sp.clone() * cr.clone() + sy.clone() * sr.clone(),
sy.clone() * cp.clone(),
sy.clone() * sp.clone() * sr.clone() + cy.clone() * cr.clone(),
sy * sp.clone() * cr.clone() - cy * sr.clone(),
-sp,
cp.clone() * sr,
cp * cr,
))
}
}
/// # Construction from a 3D eye position and target point
impl<T: SimdRealField> Rotation3<T>
where
T::Element: SimdRealField,
{
/// Creates a rotation that corresponds to the local frame of an observer standing at the
/// origin and looking toward `dir`.
///
/// It maps the `z` axis to the direction `dir`.
///
/// # Arguments
/// * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
/// * up - The vertical direction. The only requirement of this parameter is to not be
/// collinear to `dir`. Non-collinearity is not checked.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let rot = Rotation3::face_towards(&dir, &up);
/// assert_relative_eq!(rot * Vector3::z(), dir.normalize());
/// ```
#[inline]
pub fn face_towards<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
// Gram–Schmidt process
let zaxis = dir.normalize();
let xaxis = up.cross(&zaxis).normalize();
let yaxis = zaxis.cross(&xaxis);
Self::from_matrix_unchecked(SMatrix::<T, 3, 3>::new(
xaxis.x.clone(),
yaxis.x.clone(),
zaxis.x.clone(),
xaxis.y.clone(),
yaxis.y.clone(),
zaxis.y.clone(),
xaxis.z.clone(),
yaxis.z.clone(),
zaxis.z.clone(),
))
}
/// Deprecated: Use [`Rotation3::face_towards`] instead.
#[deprecated(note = "renamed to `face_towards`")]
pub fn new_observer_frames<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(dir, up)
}
/// Builds a right-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **negative** `z` axis.
/// This conforms to the common notion of right handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir - The direction toward which the camera looks.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let rot = Rotation3::look_at_rh(&dir, &up);
/// assert_relative_eq!(rot * dir.normalize(), -Vector3::z());
/// ```
#[inline]
pub fn look_at_rh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(&dir.neg(), up).inverse()
}
/// Builds a left-handed look-at view matrix without translation.
///
/// It maps the view direction `dir` to the **positive** `z` axis.
/// This conforms to the common notion of left handed look-at matrix from the computer
/// graphics community.
///
/// # Arguments
/// * dir - The direction toward which the camera looks.
/// * up - A vector approximately aligned with required the vertical axis. The only
/// requirement of this parameter is to not be collinear to `dir`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use std::f32;
/// # use nalgebra::{Rotation3, Vector3};
/// let dir = Vector3::new(1.0, 2.0, 3.0);
/// let up = Vector3::y();
///
/// let rot = Rotation3::look_at_lh(&dir, &up);
/// assert_relative_eq!(rot * dir.normalize(), Vector3::z());
/// ```
#[inline]
pub fn look_at_lh<SB, SC>(dir: &Vector<T, U3, SB>, up: &Vector<T, U3, SC>) -> Self
where
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::face_towards(dir, up).inverse()
}
}
/// # Construction from an existing 3D matrix or rotations
impl<T: SimdRealField> Rotation3<T>
where
T::Element: SimdRealField,
{
/// The rotation matrix required to align `a` and `b` but with its angle.
///
/// This is the rotation `R` such that `(R * a).angle(b) == 0 && (R * a).dot(b).is_positive()`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, Rotation3};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let rot = Rotation3::rotation_between(&a, &b).unwrap();
/// assert_relative_eq!(rot * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot.inverse() * b, a, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn rotation_between<SB, SC>(a: &Vector<T, U3, SB>, b: &Vector<T, U3, SC>) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
Self::scaled_rotation_between(a, b, T::one())
}
/// The smallest rotation needed to make `a` and `b` collinear and point toward the same
/// direction, raised to the power `s`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Vector3, Rotation3};
/// let a = Vector3::new(1.0, 2.0, 3.0);
/// let b = Vector3::new(3.0, 1.0, 2.0);
/// let rot2 = Rotation3::scaled_rotation_between(&a, &b, 0.2).unwrap();
/// let rot5 = Rotation3::scaled_rotation_between(&a, &b, 0.5).unwrap();
/// assert_relative_eq!(rot2 * rot2 * rot2 * rot2 * rot2 * a, b, epsilon = 1.0e-6);
/// assert_relative_eq!(rot5 * rot5 * a, b, epsilon = 1.0e-6);
/// ```
#[inline]
pub fn scaled_rotation_between<SB, SC>(
a: &Vector<T, U3, SB>,
b: &Vector<T, U3, SC>,
n: T,
) -> Option<Self>
where
T: RealField,
SB: Storage<T, U3>,
SC: Storage<T, U3>,
{
// TODO: code duplication with Rotation.
if let (Some(na), Some(nb)) = (a.try_normalize(T::zero()), b.try_normalize(T::zero())) {
let c = na.cross(&nb);
if let Some(axis) = Unit::try_new(c, T::default_epsilon()) {
return Some(Self::from_axis_angle(&axis, na.dot(&nb).acos() * n));
}
// Zero or PI.
if na.dot(&nb) < T::zero() {
// PI
//
// The rotation axis is undefined but the angle not zero. This is not a
// simple rotation.
return None;
}
}
Some(Self::identity())
}
/// The rotation matrix needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3};
/// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
/// let rot_to = rot1.rotation_to(&rot2);
/// assert_relative_eq!(rot_to * rot1, rot2, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn rotation_to(&self, other: &Self) -> Self {
other * self.inverse()
}
/// Raise the rotation to a given floating power, i.e., returns the rotation with the same
/// axis as `self` and an angle equal to `self.angle()` multiplied by `n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.axis().unwrap(), axis, epsilon = 1.0e-6);
/// assert_eq!(pow.angle(), 2.4);
/// ```
#[inline]
#[must_use]
pub fn powf(&self, n: T) -> Self
where
T: RealField,
{
if let Some(axis) = self.axis() {
Self::from_axis_angle(&axis, self.angle() * n)
} else if self.matrix()[(0, 0)] < T::zero() {
let minus_id = SMatrix::<T, 3, 3>::from_diagonal_element(-T::one());
Self::from_matrix_unchecked(minus_id)
} else {
Self::identity()
}
}
/// Builds a rotation from a basis assumed to be orthonormal.
///
/// In order to get a valid rotation matrix, the input must be an
/// orthonormal basis, i.e., all vectors are normalized, and the are
/// all orthogonal to each other. These invariants are not checked
/// by this method.
pub fn from_basis_unchecked(basis: &[Vector3<T>; 3]) -> Self {
let mat = Matrix3::from_columns(&basis[..]);
Self::from_matrix_unchecked(mat)
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This is an iterative method. See `.from_matrix_eps` to provide mover
/// convergence parameters and starting solution.
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
pub fn from_matrix(m: &Matrix3<T>) -> Self
where
T: RealField,
{
Self::from_matrix_eps(m, T::default_epsilon(), 0, Self::identity())
}
/// Builds a rotation matrix by extracting the rotation part of the given transformation `m`.
///
/// This implements "A Robust Method to Extract the Rotational Part of Deformations" by Müller et al.
///
/// # Parameters
///
/// * `m`: the matrix from which the rotational part is to be extracted.
/// * `eps`: the angular errors tolerated between the current rotation and the optimal one.
/// * `max_iter`: the maximum number of iterations. Loops indefinitely until convergence if set to `0`.
/// * `guess`: a guess of the solution. Convergence will be significantly faster if an initial solution close
/// to the actual solution is provided. Can be set to `Rotation3::identity()` if no other
/// guesses come to mind.
pub fn from_matrix_eps(m: &Matrix3<T>, eps: T, mut max_iter: usize, guess: Self) -> Self
where
T: RealField,
{
if max_iter == 0 {
max_iter = usize::MAX;
}
// Using sqrt(eps) ensures we perturb with something larger than eps; clamp to eps to handle the case of eps > 1.0
let eps_disturbance = eps.clone().sqrt().max(eps.clone() * eps.clone());
let mut perturbation_axes = Vector3::x_axis();
let mut rot = guess.into_inner();
for _ in 0..max_iter {
let axis = rot.column(0).cross(&m.column(0))
+ rot.column(1).cross(&m.column(1))
+ rot.column(2).cross(&m.column(2));
let denom = rot.column(0).dot(&m.column(0))
+ rot.column(1).dot(&m.column(1))
+ rot.column(2).dot(&m.column(2));
let axisangle = axis / (denom.abs() + T::default_epsilon());
if let Some((axis, angle)) = Unit::try_new_and_get(axisangle, eps.clone()) {
rot = Rotation3::from_axis_angle(&axis, angle) * rot;
} else {
// Check if stuck in a maximum w.r.t. the norm (m - rot).norm()
let mut perturbed = rot.clone();
let norm_squared = (m - &rot).norm_squared();
let mut new_norm_squared: T;
// Perturb until the new norm is significantly different
loop {
perturbed *=
Rotation3::from_axis_angle(&perturbation_axes, eps_disturbance.clone());
new_norm_squared = (m - &perturbed).norm_squared();
if abs_diff_ne!(
norm_squared,
new_norm_squared,
epsilon = T::default_epsilon()
) {
break;
}
}
// If new norm is larger, it's a minimum
if norm_squared < new_norm_squared {
break;
}
// If not, continue from perturbed rotation, but use a different axes for the next perturbation
perturbation_axes = UnitVector3::new_unchecked(perturbation_axes.yzx());
rot = perturbed;
}
}
Self::from_matrix_unchecked(rot)
}
/// Ensure this rotation is an orthonormal rotation matrix. This is useful when repeated
/// computations might cause the matrix from progressively not being orthonormal anymore.
#[inline]
pub fn renormalize(&mut self)
where
T: RealField,
{
let mut c = UnitQuaternion::from(self.clone());
let _ = c.renormalize();
*self = Self::from_matrix_eps(self.matrix(), T::default_epsilon(), 0, c.into())
}
}
/// # 3D axis and angle extraction
impl<T: SimdRealField> Rotation3<T> {
/// The rotation angle in [0; pi].
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Unit, Rotation3, Vector3};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let rot = Rotation3::from_axis_angle(&axis, 1.78);
/// assert_relative_eq!(rot.angle(), 1.78);
/// ```
#[inline]
#[must_use]
pub fn angle(&self) -> T {
((self.matrix()[(0, 0)].clone()
+ self.matrix()[(1, 1)].clone()
+ self.matrix()[(2, 2)].clone()
- T::one())
/ crate::convert(2.0))
.simd_acos()
}
/// The rotation axis. Returns `None` if the rotation angle is zero or PI.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// assert_relative_eq!(rot.axis().unwrap(), axis);
///
/// // Case with a zero angle.
/// let rot = Rotation3::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis().is_none());
/// ```
#[inline]
#[must_use]
pub fn axis(&self) -> Option<Unit<Vector3<T>>>
where
T: RealField,
{
let rotmat = self.matrix();
let axis = SVector::<T, 3>::new(
rotmat[(2, 1)].clone() - rotmat[(1, 2)].clone(),
rotmat[(0, 2)].clone() - rotmat[(2, 0)].clone(),
rotmat[(1, 0)].clone() - rotmat[(0, 1)].clone(),
);
Unit::try_new(axis, T::default_epsilon())
}
/// The rotation axis multiplied by the rotation angle.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axisangle = Vector3::new(0.1, 0.2, 0.3);
/// let rot = Rotation3::new(axisangle);
/// assert_relative_eq!(rot.scaled_axis(), axisangle, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn scaled_axis(&self) -> Vector3<T>
where
T: RealField,
{
if let Some(axis) = self.axis() {
axis.into_inner() * self.angle()
} else {
Vector::zero()
}
}
/// The rotation axis and angle in (0, pi] of this rotation matrix.
///
/// Returns `None` if the angle is zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3, Unit};
/// let axis = Unit::new_normalize(Vector3::new(1.0, 2.0, 3.0));
/// let angle = 1.2;
/// let rot = Rotation3::from_axis_angle(&axis, angle);
/// let axis_angle = rot.axis_angle().unwrap();
/// assert_relative_eq!(axis_angle.0, axis);
/// assert_relative_eq!(axis_angle.1, angle);
///
/// // Case with a zero angle.
/// let rot = Rotation3::from_axis_angle(&axis, 0.0);
/// assert!(rot.axis_angle().is_none());
/// ```
#[inline]
#[must_use]
pub fn axis_angle(&self) -> Option<(Unit<Vector3<T>>, T)>
where
T: RealField,
{
self.axis().map(|axis| (axis, self.angle()))
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{Rotation3, Vector3};
/// let rot1 = Rotation3::from_axis_angle(&Vector3::y_axis(), 1.0);
/// let rot2 = Rotation3::from_axis_angle(&Vector3::x_axis(), 0.1);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.0045657, epsilon = 1.0e-6);
/// ```
#[inline]
#[must_use]
pub fn angle_to(&self, other: &Self) -> T
where
T::Element: SimdRealField,
{
self.rotation_to(other).angle()
}
/// Creates Euler angles from a rotation.
///
/// The angles are produced in the form (roll, pitch, yaw).
#[deprecated(note = "This is renamed to use `.euler_angles()`.")]
pub fn to_euler_angles(self) -> (T, T, T)
where
T: RealField,
{
self.euler_angles()
}
/// Euler angles corresponding to this rotation from a rotation.
///
/// The angles are produced in the form (roll, pitch, yaw).
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::Rotation3;
/// let rot = Rotation3::from_euler_angles(0.1, 0.2, 0.3);
/// let euler = rot.euler_angles();
/// assert_relative_eq!(euler.0, 0.1, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.1, 0.2, epsilon = 1.0e-6);
/// assert_relative_eq!(euler.2, 0.3, epsilon = 1.0e-6);
/// ```
#[must_use]
pub fn euler_angles(&self) -> (T, T, T)
where
T: RealField,
{
// Implementation informed by "Computing Euler angles from a rotation matrix", by Gregory G. Slabaugh
// https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.371.6578
// where roll, pitch, yaw angles are referred to as ψ, θ, ϕ,
if self[(2, 0)].clone().abs() < T::one() {
let pitch = -self[(2, 0)].clone().asin();
let theta_cos = pitch.clone().cos();
let roll = (self[(2, 1)].clone() / theta_cos.clone())
.atan2(self[(2, 2)].clone() / theta_cos.clone());
let yaw =
(self[(1, 0)].clone() / theta_cos.clone()).atan2(self[(0, 0)].clone() / theta_cos);
(roll, pitch, yaw)
} else if self[(2, 0)].clone() <= -T::one() {
(
self[(0, 1)].clone().atan2(self[(0, 2)].clone()),
T::frac_pi_2(),
T::zero(),
)
} else {
(
-self[(0, 1)].clone().atan2(-self[(0, 2)].clone()),
-T::frac_pi_2(),
T::zero(),
)
}
}
/// Represent this rotation as Euler angles.
///
/// Returns the angles produced in the order provided by seq parameter, along with the
/// observability flag. The Euler axes passed to seq must form an orthonormal basis. If the
/// rotation is gimbal locked, then the observability flag is false.
///
/// # Panics
///
/// Panics if the Euler axes in `seq` are not orthonormal.
///
/// # Example 1:
/// ```
/// use std::f64::consts::PI;
/// use approx::assert_relative_eq;
/// use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
///
/// // 3-1-2
/// let n = [
/// Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
/// Unit::new_unchecked(Vector3::new(1.0, 0.0, 0.0)),
/// Unit::new_unchecked(Vector3::new(0.0, 1.0, 0.0)),
/// ];
///
/// let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
/// let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
/// let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
///
/// let d = r3 * r2 * r1;
///
/// let (angles, observable) = d.euler_angles_ordered(n, false);
/// assert!(observable);
/// assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
/// assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
/// assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
/// ```
///
/// # Example 2:
/// ```
/// use std::f64::consts::PI;
/// use approx::assert_relative_eq;
/// use nalgebra::{Matrix3, Rotation3, Unit, Vector3};
///
/// let sqrt_2 = 2.0_f64.sqrt();
/// let n = [
/// Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, 1.0 / sqrt_2, 0.0)),
/// Unit::new_unchecked(Vector3::new(1.0 / sqrt_2, -1.0 / sqrt_2, 0.0)),
/// Unit::new_unchecked(Vector3::new(0.0, 0.0, 1.0)),
/// ];
///
/// let r1 = Rotation3::from_axis_angle(&n[2], 20.0 * PI / 180.0);
/// let r2 = Rotation3::from_axis_angle(&n[1], 30.0 * PI / 180.0);
/// let r3 = Rotation3::from_axis_angle(&n[0], 45.0 * PI / 180.0);
///
/// let d = r3 * r2 * r1;
///
/// let (angles, observable) = d.euler_angles_ordered(n, false);
/// assert!(observable);
/// assert_relative_eq!(angles[0] * 180.0 / PI, 45.0, epsilon = 1e-12);
/// assert_relative_eq!(angles[1] * 180.0 / PI, 30.0, epsilon = 1e-12);
/// assert_relative_eq!(angles[2] * 180.0 / PI, 20.0, epsilon = 1e-12);
/// ```
///
/// Algorithm based on:
/// Malcolm D. Shuster, F. Landis Markley, “General formula for extraction the Euler
/// angles”, Journal of guidance, control, and dynamics, vol. 29.1, pp. 215-221. 2006,
/// and modified to be able to produce extrinsic rotations.
#[must_use]
pub fn euler_angles_ordered(
&self,
mut seq: [Unit<Vector3<T>>; 3],
extrinsic: bool,
) -> ([T; 3], bool)
where
T: RealField + Copy,
{
let mut angles = [T::zero(); 3];
let eps = T::from_subset(&1e-7);
let two = T::from_subset(&2.0);
if extrinsic {
seq.reverse();
}
let [n1, n2, n3] = &seq;
assert_relative_eq!(n1.dot(n2), T::zero(), epsilon = eps);
assert_relative_eq!(n3.dot(n1), T::zero(), epsilon = eps);
let n1_c_n2 = n1.cross(n2);
let s1 = n1_c_n2.dot(n3);
let c1 = n1.dot(n3);
let lambda = s1.atan2(c1);
let mut c = Matrix3::zeros();
c.column_mut(0).copy_from(n2);
c.column_mut(1).copy_from(&n1_c_n2);
c.column_mut(2).copy_from(n1);
c.transpose_mut();
let r1l = Matrix3::new(
T::one(),
T::zero(),
T::zero(),
T::zero(),
c1,
s1,
T::zero(),
-s1,
c1,
);
let o_t = c * self.matrix() * (c.transpose() * r1l);
angles[1] = o_t.m33.acos();
let safe1 = angles[1].abs() >= eps;
let safe2 = (angles[1] - T::pi()).abs() >= eps;
let observable = safe1 && safe2;
angles[1] += lambda;
if observable {
angles[0] = o_t.m13.atan2(-o_t.m23);
angles[2] = o_t.m31.atan2(o_t.m32);
} else {
// gimbal lock detected
if extrinsic {
// angle1 is initialized to zero
if !safe1 {
angles[2] = (o_t.m12 - o_t.m21).atan2(o_t.m11 + o_t.m22);
} else {
angles[2] = -(o_t.m12 + o_t.m21).atan2(o_t.m11 - o_t.m22);
};
} else {
// angle3 is initialized to zero
if !safe1 {
angles[0] = (o_t.m12 - o_t.m21).atan2(o_t.m11 + o_t.m22);
} else {
angles[0] = (o_t.m12 + o_t.m21).atan2(o_t.m11 - o_t.m22);
};
};
};
let adjust = if seq[0] == seq[2] {
// lambda = 0, so ensure angle2 -> [0, pi]
angles[1] < T::zero() || angles[1] > T::pi()
} else {
// lamda = + or - pi/2, so ensure angle2 -> [-pi/2, pi/2]
angles[1] < -T::frac_pi_2() || angles[1] > T::frac_pi_2()
};
// dont adjust gimbal locked rotation
if adjust && observable {
angles[0] += T::pi();
angles[1] = two * lambda - angles[1];
angles[2] -= T::pi();
}
// ensure all angles are within [-pi, pi]
for angle in angles.as_mut_slice().iter_mut() {
if *angle < -T::pi() {
*angle += T::two_pi();
} else if *angle > T::pi() {
*angle -= T::two_pi();
}
}
if extrinsic {
angles.reverse();
}
(angles, observable)
}
}
#[cfg(feature = "rand-no-std")]
impl<T: SimdRealField> Distribution<Rotation3<T>> for Standard
where
T::Element: SimdRealField,
OpenClosed01: Distribution<T>,
T: SampleUniform,
{
/// Generate a uniformly distributed random rotation.
#[inline]
fn sample<'a, R: Rng + ?Sized>(&self, rng: &mut R) -> Rotation3<T> {
// James Arvo.
// Fast random rotation matrices.
// In D. Kirk, editor, Graphics Gems III, pages 117-120. Academic, New York, 1992.
// Compute a random rotation around Z
let twopi = Uniform::new(T::zero(), T::simd_two_pi());
let theta = rng.sample(&twopi);
let (ts, tc) = theta.simd_sin_cos();
let a = SMatrix::<T, 3, 3>::new(
tc.clone(),
ts.clone(),
T::zero(),
-ts,
tc,
T::zero(),
T::zero(),
T::zero(),
T::one(),
);
// Compute a random rotation *of* Z
let phi = rng.sample(&twopi);
let z = rng.sample(OpenClosed01);
let (ps, pc) = phi.simd_sin_cos();
let sqrt_z = z.clone().simd_sqrt();
let v = Vector3::new(pc * sqrt_z.clone(), ps * sqrt_z, (T::one() - z).simd_sqrt());
let mut b = v.clone() * v.transpose();
b += b.clone();
b -= SMatrix::<T, 3, 3>::identity();
Rotation3::from_matrix_unchecked(b * a)
}
}
#[cfg(feature = "arbitrary")]
impl<T: SimdRealField + Arbitrary> Arbitrary for Rotation3<T>
where
T::Element: SimdRealField,
Owned<T, U3, U3>: Send,
Owned<T, U3>: Send,
{
#[inline]
fn arbitrary(g: &mut Gen) -> Self {
Self::new(SVector::arbitrary(g))
}
}