1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#[cfg(feature = "arbitrary")]
use crate::base::storage::Owned;
#[cfg(feature = "arbitrary")]
use quickcheck::{Arbitrary, Gen};

use num::One;
#[cfg(feature = "rand-no-std")]
use rand::{
    distributions::{Distribution, Standard},
    Rng,
};

use simba::scalar::SupersetOf;
use simba::simd::SimdRealField;

use crate::base::{Vector2, Vector3};

use crate::{
    AbstractRotation, Isometry, Point, Point3, Rotation2, Rotation3, Scalar, Similarity,
    Translation, UnitComplex, UnitQuaternion,
};

impl<T: SimdRealField, R, const D: usize> Default for Similarity<T, R, D>
where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>,
{
    fn default() -> Self {
        Self::identity()
    }
}

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>,
{
    /// Creates a new identity similarity.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::{Similarity2, Point2, Similarity3, Point3};
    ///
    /// let sim = Similarity2::identity();
    /// let pt = Point2::new(1.0, 2.0);
    /// assert_eq!(sim * pt, pt);
    ///
    /// let sim = Similarity3::identity();
    /// let pt = Point3::new(1.0, 2.0, 3.0);
    /// assert_eq!(sim * pt, pt);
    /// ```
    #[inline]
    pub fn identity() -> Self {
        Self::from_isometry(Isometry::identity(), T::one())
    }
}

impl<T: SimdRealField, R, const D: usize> One for Similarity<T, R, D>
where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>,
{
    /// Creates a new identity similarity.
    #[inline]
    fn one() -> Self {
        Self::identity()
    }
}

#[cfg(feature = "rand-no-std")]
impl<T: crate::RealField, R, const D: usize> Distribution<Similarity<T, R, D>> for Standard
where
    R: AbstractRotation<T, D>,
    Standard: Distribution<T> + Distribution<R>,
{
    /// Generate an arbitrary random variate for testing purposes.
    #[inline]
    fn sample<'a, G: Rng + ?Sized>(&self, rng: &mut G) -> Similarity<T, R, D> {
        let mut s = rng.gen();
        while relative_eq!(s, T::zero()) {
            s = rng.gen()
        }

        Similarity::from_isometry(rng.gen(), s)
    }
}

impl<T: SimdRealField, R, const D: usize> Similarity<T, R, D>
where
    T::Element: SimdRealField,
    R: AbstractRotation<T, D>,
{
    /// The similarity that applies the scaling factor `scaling`, followed by the rotation `r` with
    /// its axis passing through the point `p`.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Similarity2, Point2, UnitComplex};
    /// let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
    /// let pt = Point2::new(3.0, 2.0);
    /// let sim = Similarity2::rotation_wrt_point(rot, pt, 4.0);
    ///
    /// assert_relative_eq!(sim * Point2::new(1.0, 2.0), Point2::new(-3.0, 3.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn rotation_wrt_point(r: R, p: Point<T, D>, scaling: T) -> Self {
        let shift = r.transform_vector(&-&p.coords);
        Self::from_parts(Translation::from(shift + p.coords), r, scaling)
    }
}

#[cfg(feature = "arbitrary")]
impl<T, R, const D: usize> Arbitrary for Similarity<T, R, D>
where
    T: crate::RealField + Arbitrary + Send,
    T::Element: crate::RealField,
    R: AbstractRotation<T, D> + Arbitrary + Send,
    Owned<T, crate::Const<D>>: Send,
{
    #[inline]
    fn arbitrary(rng: &mut Gen) -> Self {
        let mut s: T = Arbitrary::arbitrary(rng);
        while s.is_zero() {
            s = Arbitrary::arbitrary(rng)
        }

        Self::from_isometry(Arbitrary::arbitrary(rng), s)
    }
}

/*
 *
 * Constructors for various static dimensions.
 *
 */

// 2D similarity.
impl<T: SimdRealField> Similarity<T, Rotation2<T>, 2>
where
    T::Element: SimdRealField,
{
    /// Creates a new similarity from a translation, a rotation, and an uniform scaling factor.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{SimilarityMatrix2, Vector2, Point2};
    /// let sim = SimilarityMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
    ///
    /// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self {
        Self::from_parts(
            Translation::from(translation),
            Rotation2::new(angle),
            scaling,
        )
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::SimilarityMatrix2;
    /// let sim = SimilarityMatrix2::<f64>::identity();
    /// let sim2 = sim.cast::<f32>();
    /// assert_eq!(sim2, SimilarityMatrix2::<f32>::identity());
    /// ```
    pub fn cast<To: Scalar>(self) -> Similarity<To, Rotation2<To>, 2>
    where
        Similarity<To, Rotation2<To>, 2>: SupersetOf<Self>,
    {
        crate::convert(self)
    }
}

impl<T: SimdRealField> Similarity<T, UnitComplex<T>, 2>
where
    T::Element: SimdRealField,
{
    /// Creates a new similarity from a translation and a rotation angle.
    ///
    /// # Example
    /// ```
    /// # #[macro_use] extern crate approx;
    /// # use std::f32;
    /// # use nalgebra::{Similarity2, Vector2, Point2};
    /// let sim = Similarity2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2, 3.0);
    ///
    /// assert_relative_eq!(sim * Point2::new(2.0, 4.0), Point2::new(-11.0, 8.0), epsilon = 1.0e-6);
    /// ```
    #[inline]
    pub fn new(translation: Vector2<T>, angle: T, scaling: T) -> Self {
        Self::from_parts(
            Translation::from(translation),
            UnitComplex::new(angle),
            scaling,
        )
    }

    /// Cast the components of `self` to another type.
    ///
    /// # Example
    /// ```
    /// # use nalgebra::Similarity2;
    /// let sim = Similarity2::<f64>::identity();
    /// let sim2 = sim.cast::<f32>();
    /// assert_eq!(sim2, Similarity2::<f32>::identity());
    /// ```
    pub fn cast<To: Scalar>(self) -> Similarity<To, UnitComplex<To>, 2>
    where
        Similarity<To, UnitComplex<To>, 2>: SupersetOf<Self>,
    {
        crate::convert(self)
    }
}

// 3D rotation.
macro_rules! similarity_construction_impl(
    ($Rot: ident) => {
        impl<T: SimdRealField> Similarity<T, $Rot<T>, 3>
        where T::Element: SimdRealField {
            /// Creates a new similarity from a translation, rotation axis-angle, and scaling
            /// factor.
            ///
            /// # Example
            /// ```
            /// # #[macro_use] extern crate approx;
            /// # use std::f32;
            /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
            /// let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
            /// let translation = Vector3::new(1.0, 2.0, 3.0);
            /// // Point and vector being transformed in the tests.
            /// let pt = Point3::new(4.0, 5.0, 6.0);
            /// let vec = Vector3::new(4.0, 5.0, 6.0);
            ///
            /// // Similarity with its rotation part represented as a UnitQuaternion
            /// let sim = Similarity3::new(translation, axisangle, 3.0);
            /// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
            /// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
            ///
            /// // Similarity with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
            /// let sim = SimilarityMatrix3::new(translation, axisangle, 3.0);
            /// assert_relative_eq!(sim * pt, Point3::new(19.0, 17.0, -9.0), epsilon = 1.0e-5);
            /// assert_relative_eq!(sim * vec, Vector3::new(18.0, 15.0, -12.0), epsilon = 1.0e-5);
            /// ```
            #[inline]
            pub fn new(translation: Vector3<T>, axisangle: Vector3<T>, scaling: T) -> Self
            {
                Self::from_isometry(Isometry::<_, $Rot<T>, 3>::new(translation, axisangle), scaling)
            }

            /// Cast the components of `self` to another type.
            ///
            /// # Example
            /// ```
            /// # use nalgebra::Similarity3;
            /// let sim = Similarity3::<f64>::identity();
            /// let sim2 = sim.cast::<f32>();
            /// assert_eq!(sim2, Similarity3::<f32>::identity());
            /// ```
            pub fn cast<To: Scalar>(self) -> Similarity<To, $Rot<To>, 3>
            where
                Similarity<To, $Rot<To>, 3>: SupersetOf<Self>,
            {
                crate::convert(self)
            }

            /// Creates an similarity that corresponds to a scaling factor and a local frame of
            /// an observer standing at the point `eye` and looking toward `target`.
            ///
            /// It maps the view direction `target - eye` to the positive `z` axis and the origin to the
            /// `eye`.
            ///
            /// # Arguments
            ///   * eye - The observer position.
            ///   * target - The target position.
            ///   * up - Vertical direction. The only requirement of this parameter is to not be collinear
            ///   to `eye - at`. Non-collinearity is not checked.
            ///
            /// # Example
            /// ```
            /// # #[macro_use] extern crate approx;
            /// # use std::f32;
            /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
            /// let eye = Point3::new(1.0, 2.0, 3.0);
            /// let target = Point3::new(2.0, 2.0, 3.0);
            /// let up = Vector3::y();
            ///
            /// // Similarity with its rotation part represented as a UnitQuaternion
            /// let sim = Similarity3::face_towards(&eye, &target, &up, 3.0);
            /// assert_eq!(sim * Point3::origin(), eye);
            /// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
            ///
            /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
            /// let sim = SimilarityMatrix3::face_towards(&eye, &target, &up, 3.0);
            /// assert_eq!(sim * Point3::origin(), eye);
            /// assert_relative_eq!(sim * Vector3::z(), Vector3::x() * 3.0, epsilon = 1.0e-6);
            /// ```
            #[inline]
            pub fn face_towards(eye:    &Point3<T>,
                                target: &Point3<T>,
                                up:     &Vector3<T>,
                                scaling: T)
                                -> Self {
                Self::from_isometry(Isometry::<_, $Rot<T>, 3>::face_towards(eye, target, up), scaling)
            }

            /// Deprecated: Use [`SimilarityMatrix3::face_towards`](Self::face_towards) instead.
            #[deprecated(note="renamed to `face_towards`")]
            pub fn new_observer_frames(eye:    &Point3<T>,
                                       target: &Point3<T>,
                                       up:     &Vector3<T>,
                                       scaling: T)
                                       -> Self {
                Self::face_towards(eye, target, up, scaling)
            }

            /// Builds a right-handed look-at view matrix including scaling factor.
            ///
            /// This conforms to the common notion of right handed look-at matrix from the computer
            /// graphics community.
            ///
            /// # Arguments
            ///   * eye - The eye position.
            ///   * target - The target position.
            ///   * up - A vector approximately aligned with required the vertical axis. The only
            ///   requirement of this parameter is to not be collinear to `target - eye`.
            ///
            /// # Example
            /// ```
            /// # #[macro_use] extern crate approx;
            /// # use std::f32;
            /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
            /// let eye = Point3::new(1.0, 2.0, 3.0);
            /// let target = Point3::new(2.0, 2.0, 3.0);
            /// let up = Vector3::y();
            ///
            /// // Similarity with its rotation part represented as a UnitQuaternion
            /// let iso = Similarity3::look_at_rh(&eye, &target, &up, 3.0);
            /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
            ///
            /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
            /// let iso = SimilarityMatrix3::look_at_rh(&eye, &target, &up, 3.0);
            /// assert_relative_eq!(iso * Vector3::x(), -Vector3::z() * 3.0, epsilon = 1.0e-6);
            /// ```
            #[inline]
            pub fn look_at_rh(eye:     &Point3<T>,
                              target:  &Point3<T>,
                              up:      &Vector3<T>,
                              scaling: T)
                              -> Self {
                Self::from_isometry(Isometry::<_, $Rot<T>, 3>::look_at_rh(eye, target, up), scaling)
            }

            /// Builds a left-handed look-at view matrix including a scaling factor.
            ///
            /// This conforms to the common notion of left handed look-at matrix from the computer
            /// graphics community.
            ///
            /// # Arguments
            ///   * eye - The eye position.
            ///   * target - The target position.
            ///   * up - A vector approximately aligned with required the vertical axis. The only
            ///   requirement of this parameter is to not be collinear to `target - eye`.
            ///
            /// # Example
            /// ```
            /// # #[macro_use] extern crate approx;
            /// # use std::f32;
            /// # use nalgebra::{Similarity3, SimilarityMatrix3, Point3, Vector3};
            /// let eye = Point3::new(1.0, 2.0, 3.0);
            /// let target = Point3::new(2.0, 2.0, 3.0);
            /// let up = Vector3::y();
            ///
            /// // Similarity with its rotation part represented as a UnitQuaternion
            /// let sim = Similarity3::look_at_lh(&eye, &target, &up, 3.0);
            /// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
            ///
            /// // Similarity with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
            /// let sim = SimilarityMatrix3::look_at_lh(&eye, &target, &up, 3.0);
            /// assert_relative_eq!(sim * Vector3::x(), Vector3::z() * 3.0, epsilon = 1.0e-6);
            /// ```
            #[inline]
            pub fn look_at_lh(eye:     &Point3<T>,
                              target:  &Point3<T>,
                              up:      &Vector3<T>,
                              scaling: T)
                              -> Self {
                Self::from_isometry(Isometry::<_, $Rot<T>, 3>::look_at_lh(eye, target, up), scaling)
            }
        }
    }
);

similarity_construction_impl!(Rotation3);
similarity_construction_impl!(UnitQuaternion);