1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use crate::storage::Storage;
use crate::{
    Allocator, Bidiagonal, Cholesky, ColPivQR, ComplexField, DefaultAllocator, Dim, DimDiff,
    DimMin, DimMinimum, DimSub, FullPivLU, Hessenberg, Matrix, OMatrix, RealField, Schur,
    SymmetricEigen, SymmetricTridiagonal, LU, QR, SVD, U1, UDU,
};

/// # Rectangular matrix decomposition
///
/// This section contains the methods for computing some common decompositions of rectangular
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition            | Factors             | Details |
/// | -------------------------|---------------------|--------------|
/// | QR                       | `Q * R`             | `Q` is an unitary matrix, and `R` is upper-triangular. |
/// | QR with column pivoting  | `Q * R * P⁻¹`       | `Q` is an unitary matrix, and `R` is upper-triangular. `P` is a permutation matrix. |
/// | LU with partial pivoting | `P⁻¹ * L * U`       | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` is a permutation matrix. |
/// | LU with full pivoting    | `P⁻¹ * L * U * Q⁻¹` | `L` is lower-triangular with a diagonal filled with `1` and `U` is upper-triangular. `P` and `Q` are permutation matrices. |
/// | SVD                      | `U * Σ * Vᵀ`        | `U` and `V` are two orthogonal matrices and `Σ` is a diagonal matrix containing the singular values. |
/// | Polar (Left Polar)       | `P' * U`            | `U` is semi-unitary/unitary and `P'` is a positive semi-definite Hermitian Matrix
impl<T: ComplexField, R: Dim, C: Dim, S: Storage<T, R, C>> Matrix<T, R, C, S> {
    /// Computes the bidiagonalization using householder reflections.
    pub fn bidiagonalize(self) -> Bidiagonal<T, R, C>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>,
        DefaultAllocator: Allocator<R, C>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>,
    {
        Bidiagonal::new(self.into_owned())
    }

    /// Computes the LU decomposition with full pivoting of `matrix`.
    ///
    /// This effectively computes `P, L, U, Q` such that `P * matrix * Q = LU`.
    pub fn full_piv_lu(self) -> FullPivLU<T, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
    {
        FullPivLU::new(self.into_owned())
    }

    /// Computes the LU decomposition with partial (row) pivoting of `matrix`.
    pub fn lu(self) -> LU<T, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<R, C> + Allocator<DimMinimum<R, C>>,
    {
        LU::new(self.into_owned())
    }

    /// Computes the QR decomposition of this matrix.
    pub fn qr(self) -> QR<T, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<R, C> + Allocator<R> + Allocator<DimMinimum<R, C>>,
    {
        QR::new(self.into_owned())
    }

    /// Computes the QR decomposition (with column pivoting) of this matrix.
    pub fn col_piv_qr(self) -> ColPivQR<T, R, C>
    where
        R: DimMin<C>,
        DefaultAllocator: Allocator<R, C>
            + Allocator<R>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>,
    {
        ColPivQR::new(self.into_owned())
    }

    /// Computes the Singular Value Decomposition using implicit shift.
    /// The singular values are guaranteed to be sorted in descending order.
    /// If this order is not required consider using `svd_unordered`.
    pub fn svd(self, compute_u: bool, compute_v: bool) -> SVD<T, R, C>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>,
    {
        SVD::new(self.into_owned(), compute_u, compute_v)
    }

    /// Computes the Singular Value Decomposition using implicit shift.
    /// The singular values are not guaranteed to be sorted in any particular order.
    /// If a descending order is required, consider using `svd` instead.
    pub fn svd_unordered(self, compute_u: bool, compute_v: bool) -> SVD<T, R, C>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>,
    {
        SVD::new_unordered(self.into_owned(), compute_u, compute_v)
    }

    /// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
    /// The singular values are guaranteed to be sorted in descending order.
    /// If this order is not required consider using `try_svd_unordered`.
    ///
    /// # Arguments
    ///
    /// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
    /// * `compute_v` − set this to `true` to enable the computation of right-singular vectors.
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_svd(
        self,
        compute_u: bool,
        compute_v: bool,
        eps: T::RealField,
        max_niter: usize,
    ) -> Option<SVD<T, R, C>>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>,
    {
        SVD::try_new(self.into_owned(), compute_u, compute_v, eps, max_niter)
    }

    /// Attempts to compute the Singular Value Decomposition of `matrix` using implicit shift.
    /// The singular values are not guaranteed to be sorted in any particular order.
    /// If a descending order is required, consider using `try_svd` instead.
    ///
    /// # Arguments
    ///
    /// * `compute_u` − set this to `true` to enable the computation of left-singular vectors.
    /// * `compute_v` − set this to `true` to enable the computation of right-singular vectors.
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_svd_unordered(
        self,
        compute_u: bool,
        compute_v: bool,
        eps: T::RealField,
        max_niter: usize,
    ) -> Option<SVD<T, R, C>>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>,
    {
        SVD::try_new_unordered(self.into_owned(), compute_u, compute_v, eps, max_niter)
    }

    /// Computes the Polar Decomposition of  a `matrix` (indirectly uses SVD).
    pub fn polar(self) -> (OMatrix<T, R, R>, OMatrix<T, R, C>)
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<DimMinimum<R, C>, R>
            + Allocator<DimMinimum<R, C>>
            + Allocator<R, R>
            + Allocator<DimMinimum<R, C>, DimMinimum<R, C>>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>,
    {
        SVD::new_unordered(self.into_owned(), true, true)
            .to_polar()
            .unwrap()
    }

    /// Attempts to compute the Polar Decomposition of  a `matrix` (indirectly uses SVD).
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0 when computing the SVD.
    /// * `max_niter` − maximum total number of iterations performed by the SVD computation algorithm.
    pub fn try_polar(
        self,
        eps: T::RealField,
        max_niter: usize,
    ) -> Option<(OMatrix<T, R, R>, OMatrix<T, R, C>)>
    where
        R: DimMin<C>,
        DimMinimum<R, C>: DimSub<U1>, // for Bidiagonal.
        DefaultAllocator: Allocator<R, C>
            + Allocator<DimMinimum<R, C>, R>
            + Allocator<DimMinimum<R, C>>
            + Allocator<R, R>
            + Allocator<DimMinimum<R, C>, DimMinimum<R, C>>
            + Allocator<C>
            + Allocator<R>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>
            + Allocator<DimMinimum<R, C>, C>
            + Allocator<R, DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimMinimum<R, C>>
            + Allocator<DimDiff<DimMinimum<R, C>, U1>>,
    {
        SVD::try_new_unordered(self.into_owned(), true, true, eps, max_niter)
            .and_then(|svd| svd.to_polar())
    }
}

/// # Square matrix decomposition
///
/// This section contains the methods for computing some common decompositions of square
/// matrices with real or complex components. The following are currently supported:
///
/// | Decomposition            | Factors                   | Details |
/// | -------------------------|---------------------------|--------------|
/// | Hessenberg               | `Q * H * Qᵀ`             | `Q` is a unitary matrix and `H` an upper-Hessenberg matrix. |
/// | Cholesky                 | `L * Lᵀ`                 | `L` is a lower-triangular matrix. |
/// | UDU                      | `U * D * Uᵀ`             | `U` is a upper-triangular matrix, and `D` a diagonal matrix. |
/// | Schur decomposition      | `Q * T * Qᵀ`             | `Q` is an unitary matrix and `T` a quasi-upper-triangular matrix. |
/// | Symmetric eigendecomposition | `Q ~ Λ ~ Qᵀ`   | `Q` is an unitary matrix, and `Λ` is a real diagonal matrix. |
/// | Symmetric tridiagonalization | `Q ~ T ~ Qᵀ`   | `Q` is an unitary matrix, and `T` is a tridiagonal matrix. |
impl<T: ComplexField, D: Dim, S: Storage<T, D, D>> Matrix<T, D, D, S> {
    /// Attempts to compute the Cholesky decomposition of this matrix.
    ///
    /// Returns `None` if the input matrix is not definite-positive. The input matrix is assumed
    /// to be symmetric and only the lower-triangular part is read.
    pub fn cholesky(self) -> Option<Cholesky<T, D>>
    where
        DefaultAllocator: Allocator<D, D>,
    {
        Cholesky::new(self.into_owned())
    }

    /// Attempts to compute the UDU decomposition of this matrix.
    ///
    /// The input matrix `self` is assumed to be symmetric and this decomposition will only read
    /// the upper-triangular part of `self`.
    pub fn udu(self) -> Option<UDU<T, D>>
    where
        T: RealField,
        DefaultAllocator: Allocator<D> + Allocator<D, D>,
    {
        UDU::new(self.into_owned())
    }

    /// Computes the Hessenberg decomposition of this matrix using householder reflections.
    pub fn hessenberg(self) -> Hessenberg<T, D>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<D, D> + Allocator<D> + Allocator<DimDiff<D, U1>>,
    {
        Hessenberg::new(self.into_owned())
    }

    /// Computes the Schur decomposition of a square matrix.
    pub fn schur(self) -> Schur<T, D>
    where
        D: DimSub<U1>, // For Hessenberg.
        DefaultAllocator: Allocator<D, DimDiff<D, U1>>
            + Allocator<DimDiff<D, U1>>
            + Allocator<D, D>
            + Allocator<D>,
    {
        Schur::new(self.into_owned())
    }

    /// Attempts to compute the Schur decomposition of a square matrix.
    ///
    /// If only eigenvalues are needed, it is more efficient to call the matrix method
    /// `.eigenvalues()` instead.
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_schur(self, eps: T::RealField, max_niter: usize) -> Option<Schur<T, D>>
    where
        D: DimSub<U1>, // For Hessenberg.
        DefaultAllocator: Allocator<D, DimDiff<D, U1>>
            + Allocator<DimDiff<D, U1>>
            + Allocator<D, D>
            + Allocator<D>,
    {
        Schur::try_new(self.into_owned(), eps, max_niter)
    }

    /// Computes the eigendecomposition of this symmetric matrix.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    pub fn symmetric_eigen(self) -> SymmetricEigen<T, D>
    where
        D: DimSub<U1>,
        DefaultAllocator:
            Allocator<D, D> + Allocator<DimDiff<D, U1>> + Allocator<D> + Allocator<DimDiff<D, U1>>,
    {
        SymmetricEigen::new(self.into_owned())
    }

    /// Computes the eigendecomposition of the given symmetric matrix with user-specified
    /// convergence parameters.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    ///
    /// # Arguments
    ///
    /// * `eps`       − tolerance used to determine when a value converged to 0.
    /// * `max_niter` − maximum total number of iterations performed by the algorithm. If this
    /// number of iteration is exceeded, `None` is returned. If `niter == 0`, then the algorithm
    /// continues indefinitely until convergence.
    pub fn try_symmetric_eigen(
        self,
        eps: T::RealField,
        max_niter: usize,
    ) -> Option<SymmetricEigen<T, D>>
    where
        D: DimSub<U1>,
        DefaultAllocator:
            Allocator<D, D> + Allocator<DimDiff<D, U1>> + Allocator<D> + Allocator<DimDiff<D, U1>>,
    {
        SymmetricEigen::try_new(self.into_owned(), eps, max_niter)
    }

    /// Computes the tridiagonalization of this symmetric matrix.
    ///
    /// Only the lower-triangular part (including the diagonal) of `m` is read.
    pub fn symmetric_tridiagonalize(self) -> SymmetricTridiagonal<T, D>
    where
        D: DimSub<U1>,
        DefaultAllocator: Allocator<D, D> + Allocator<DimDiff<D, U1>>,
    {
        SymmetricTridiagonal::new(self.into_owned())
    }
}