nalgebra_macros/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
//! Macros for `nalgebra`.
//!
//! This crate is not intended for direct consumption. Instead, the macros are re-exported by
//! `nalgebra` if the `macros` feature is enabled (enabled by default).

#![deny(
    nonstandard_style,
    unused,
    missing_docs,
    rust_2018_idioms,
    rust_2018_compatibility,
    future_incompatible,
    missing_copy_implementations,
    missing_debug_implementations,
    clippy::all
)]

mod matrix_vector_impl;
mod stack_impl;

use matrix_vector_impl::{Matrix, Vector};

use crate::matrix_vector_impl::{dmatrix_impl, dvector_impl, matrix_impl, vector_impl};
use proc_macro::TokenStream;
use quote::quote;
use stack_impl::stack_impl;
use syn::parse_macro_input;

/// Construct a fixed-size matrix directly from data.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// This macro facilitates easy construction of matrices when the entries of the matrix are known
/// (either as constants or expressions). This macro produces an instance of `SMatrix`. This means
/// that the data of the matrix is stored on the stack, and its dimensions are fixed at
/// compile-time. If you want to construct a dynamic matrix, use [`dmatrix!`] instead.
///
/// `matrix!` is intended to be both the simplest and most efficient way to construct (small)
/// matrices, and can also be used in *const fn* contexts.
///
/// The syntax is MATLAB-like. Column elements are separated by a comma (`,`), and a semi-colon
/// (`;`) designates that a new row begins.
///
/// # Examples
/// ```
/// use nalgebra::matrix;
///
/// // Produces a Matrix3<_> == SMatrix<_, 3, 3>
/// let a = matrix![1, 2, 3;
///                 4, 5, 6;
///                 7, 8, 9];
/// ```
///
/// You can construct matrices with arbitrary expressions for its elements:
///
/// ```
/// use nalgebra::{matrix, Matrix2};
/// let theta = 0.45f64;
///
/// let r = matrix![theta.cos(), - theta.sin();
///                 theta.sin(),   theta.cos()];
/// ```
#[proc_macro]
pub fn matrix(stream: TokenStream) -> TokenStream {
    matrix_impl(stream)
}

/// Construct a dynamic matrix directly from data.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// The syntax is exactly the same as for [`matrix!`], but instead of producing instances of
/// `SMatrix`, it produces instances of `DMatrix`. At the moment it is not usable
/// in `const fn` contexts.
///
/// # Example
/// ```
/// use nalgebra::dmatrix;
///
/// // Produces a DMatrix<_>
/// let a = dmatrix![1, 2, 3;
///                  4, 5, 6;
///                  7, 8, 9];
/// ```
#[proc_macro]
pub fn dmatrix(stream: TokenStream) -> TokenStream {
    dmatrix_impl(stream)
}

/// Construct a fixed-size column vector directly from data.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// Similarly to [`matrix!`], this macro facilitates easy construction of fixed-size vectors.
/// However, whereas the [`matrix!`] macro expects each row to be separated by a semi-colon,
/// the syntax of this macro is instead similar to `vec!`, in that the elements of the vector
/// are simply listed consecutively.
///
/// `vector!` is intended to be the most readable and performant way of constructing small,
/// fixed-size vectors, and it is usable in `const fn` contexts.
///
/// # Example
/// ```
/// use nalgebra::vector;
///
/// // Produces a Vector3<_> == SVector<_, 3>
/// let v = vector![1, 2, 3];
/// ```
#[proc_macro]
pub fn vector(stream: TokenStream) -> TokenStream {
    vector_impl(stream)
}

/// Construct a dynamic column vector directly from data.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// The syntax is exactly the same as for [`vector!`], but instead of producing instances of
/// `SVector`, it produces instances of `DVector`. At the moment it is not usable
/// in `const fn` contexts.
///
/// # Example
/// ```
/// use nalgebra::dvector;
///
/// // Produces a DVector<_>
/// let v = dvector![1, 2, 3];
/// ```
#[proc_macro]
pub fn dvector(stream: TokenStream) -> TokenStream {
    dvector_impl(stream)
}

/// Construct a fixed-size point directly from data.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// Similarly to [`vector!`], this macro facilitates easy construction of points.
///
/// `point!` is intended to be the most readable and performant way of constructing small,
/// points, and it is usable in `const fn` contexts.
///
/// # Example
/// ```
/// use nalgebra::point;
///
/// // Produces a Point3<_>
/// let v = point![1, 2, 3];
/// ```
#[proc_macro]
pub fn point(stream: TokenStream) -> TokenStream {
    let vector = parse_macro_input!(stream as Vector);
    let len = vector.len();
    let array_tokens = vector.to_array_tokens();
    let output = quote! {
        nalgebra::Point::<_, #len> {
            coords: nalgebra::SVector::<_, #len>
                        ::from_array_storage(nalgebra::ArrayStorage([#array_tokens]))
        }
    };
    proc_macro::TokenStream::from(output)
}

/// Construct a new matrix by stacking matrices in a block matrix.
///
/// **Note: Requires the `macros` feature to be enabled (enabled by default)**.
///
/// This macro facilitates the construction of
/// [block matrices](https://en.wikipedia.org/wiki/Block_matrix)
/// by stacking blocks (matrices) using the same MATLAB-like syntax as the [`matrix!`] and
/// [`dmatrix!`] macros:
///
/// ```rust
/// # use nalgebra::stack;
/// #
/// # fn main() {
/// # let [a, b, c, d] = std::array::from_fn(|_| nalgebra::Matrix1::new(0));
/// // a, b, c and d are matrices
/// let block_matrix = stack![ a, b;
///                            c, d ];
/// # }
/// ```
///
/// The resulting matrix is stack-allocated if the dimension of each block row and column
/// can be determined at compile-time, otherwise it is heap-allocated.
/// This is the case if, for every row, there is at least one matrix with a fixed number of rows,
/// and, for every column, there is at least one matrix with a fixed number of columns.
///
/// [`stack!`] also supports special syntax to indicate zero blocks in a matrix:
///
/// ```rust
/// # use nalgebra::stack;
/// #
/// # fn main() {
/// # let [a, b, c, d] = std::array::from_fn(|_| nalgebra::Matrix1::new(0));
/// // a and d are matrices
/// let block_matrix = stack![ a, 0;
///                            0, d ];
/// # }
/// ```
/// Here, the `0` literal indicates a zero matrix of implicitly defined size.
/// In order to infer the size of the zero blocks, there must be at least one matrix
/// in every row and column of the matrix.
/// In other words, no row or column can consist entirely of implicit zero blocks.
///
/// # Panics
///
/// Panics if dimensions are inconsistent and it cannot be determined at compile-time.
///
/// # Examples
///
/// ```
/// use nalgebra::{matrix, SMatrix, stack};
///
/// let a = matrix![1, 2;
///                 3, 4];
/// let b = matrix![5, 6;
///                 7, 8];
/// let c = matrix![9, 10];
///
/// let block_matrix = stack![ a, b;
///                            c, 0 ];
///
/// assert_eq!(block_matrix, matrix![1,  2,  5,  6;
///                                  3,  4,  7,  8;
///                                  9, 10,  0,  0]);
///
/// // Verify that the resulting block matrix is stack-allocated
/// let _: SMatrix<_, 3, 4> = block_matrix;
/// ```
///
/// The example above shows how stacking stack-allocated matrices results in a stack-allocated
/// block matrix. If all row and column dimensions can not be determined at compile-time,
/// the result is instead a dynamically allocated matrix:
///
/// ```
/// use nalgebra::{dmatrix, DMatrix, Dyn, matrix, OMatrix, SMatrix, stack, U3};
///
/// # let a = matrix![1, 2; 3, 4]; let c = matrix![9, 10];
/// // a and c as before, but b is a dynamic matrix this time
/// let b = dmatrix![5, 6;
///                  7, 8];
///
/// // In this case, the number of rows can be statically inferred to be 3 (U3),
/// // but the number of columns cannot, hence it is dynamic
/// let block_matrix: OMatrix<_, U3, Dyn> = stack![ a, b;
///                                                 c, 0 ];
///
/// // If necessary, a fully dynamic matrix (DMatrix) can be obtained by reshaping
/// let dyn_block_matrix: DMatrix<_> = block_matrix.reshape_generic(Dyn(3), Dyn(4));
/// ```
/// Note that explicitly annotating the types of `block_matrix` and `dyn_block_matrix` is
/// only made for illustrative purposes, and is not generally necessary.
///
#[proc_macro]
pub fn stack(stream: TokenStream) -> TokenStream {
    let matrix = parse_macro_input!(stream as Matrix);
    proc_macro::TokenStream::from(stack_impl(matrix).unwrap_or_else(syn::Error::into_compile_error))
}