1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
//! Axis Aligned Bounding Box.

use crate::bounding_volume::{BoundingSphere, BoundingVolume};
use crate::math::{Isometry, Point, Real, UnitVector, Vector, DIM, TWO_DIM};
use crate::shape::{Cuboid, SupportMap};
use crate::utils::IsometryOps;
use arrayvec::ArrayVec;
use na;
use num::Bounded;

#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()

use crate::query::{Ray, RayCast};
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

/// An Axis Aligned Bounding Box.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(Debug, PartialEq, Copy, Clone)]
#[repr(C)]
pub struct Aabb {
    pub mins: Point<Real>,
    pub maxs: Point<Real>,
}

impl Aabb {
    /// The vertex indices of each edge of this `Aabb`.
    ///
    /// This gives, for each edge of this `Aabb`, the indices of its
    /// vertices when taken from the `self.vertices()` array.
    /// Here is how the faces are numbered, assuming
    /// a right-handed coordinate system:
    ///
    /// ```text
    ///    y             3 - 2
    ///    |           7 − 6 |
    ///    ___ x       |   | 1  (the zero is below 3 and on the left of 1,
    ///   /            4 - 5     hidden by the 4-5-6-7 face.)
    ///  z
    /// ```
    #[cfg(feature = "dim3")]
    pub const EDGES_VERTEX_IDS: [(usize, usize); 12] = [
        (0, 1),
        (1, 2),
        (3, 2),
        (0, 3),
        (4, 5),
        (5, 6),
        (7, 6),
        (4, 7),
        (0, 4),
        (1, 5),
        (2, 6),
        (3, 7),
    ];

    /// The vertex indices of each face of this `Aabb`.
    ///
    /// This gives, for each face of this `Aabb`, the indices of its
    /// vertices when taken from the `self.vertices()` array.
    /// Here is how the faces are numbered, assuming
    /// a right-handed coordinate system:
    ///
    /// ```text
    ///    y             3 - 2
    ///    |           7 − 6 |
    ///    ___ x       |   | 1  (the zero is below 3 and on the left of 1,
    ///   /            4 - 5     hidden by the 4-5-6-7 face.)
    ///  z
    /// ```
    #[cfg(feature = "dim3")]
    pub const FACES_VERTEX_IDS: [(usize, usize, usize, usize); 6] = [
        (1, 2, 6, 5),
        (0, 3, 7, 4),
        (2, 3, 7, 6),
        (1, 0, 4, 5),
        (4, 5, 6, 7),
        (0, 1, 2, 3),
    ];

    /// Creates a new Aabb.
    ///
    /// # Arguments:
    ///   * `mins` - position of the point with the smallest coordinates.
    ///   * `maxs` - position of the point with the highest coordinates. Each component of `mins`
    ///   must be smaller than the related components of `maxs`.
    #[inline]
    pub fn new(mins: Point<Real>, maxs: Point<Real>) -> Aabb {
        Aabb { mins, maxs }
    }

    /// Creates an invalid `Aabb` with `mins` components set to `Real::max_values` and `maxs`components set to `-Real::max_values`.
    ///
    /// This is often used as the initial values of some `Aabb` merging algorithms.
    #[inline]
    pub fn new_invalid() -> Self {
        Self::new(
            Vector::repeat(Real::max_value()).into(),
            Vector::repeat(-Real::max_value()).into(),
        )
    }

    /// Creates a new `Aabb` from its center and its half-extents.
    #[inline]
    pub fn from_half_extents(center: Point<Real>, half_extents: Vector<Real>) -> Self {
        Self::new(center - half_extents, center + half_extents)
    }

    /// Creates a new `Aabb` from a set of points.
    pub fn from_points<'a, I>(pts: I) -> Self
    where
        I: IntoIterator<Item = &'a Point<Real>>,
    {
        super::aabb_utils::local_point_cloud_aabb(pts)
    }

    /// The center of this `Aabb`.
    #[inline]
    pub fn center(&self) -> Point<Real> {
        na::center(&self.mins, &self.maxs)
    }

    /// The half extents of this `Aabb`.
    #[inline]
    pub fn half_extents(&self) -> Vector<Real> {
        let half: Real = na::convert::<f64, Real>(0.5);
        (self.maxs - self.mins) * half
    }

    /// The volume of this `Aabb`.
    #[inline]
    pub fn volume(&self) -> Real {
        let extents = self.extents();
        #[cfg(feature = "dim2")]
        return extents.x * extents.y;
        #[cfg(feature = "dim3")]
        return extents.x * extents.y * extents.z;
    }

    /// The extents of this `Aabb`.
    #[inline]
    pub fn extents(&self) -> Vector<Real> {
        self.maxs - self.mins
    }

    /// Enlarges this `Aabb` so it also contains the point `pt`.
    pub fn take_point(&mut self, pt: Point<Real>) {
        self.mins = self.mins.coords.inf(&pt.coords).into();
        self.maxs = self.maxs.coords.sup(&pt.coords).into();
    }

    /// Computes the `Aabb` bounding `self` transformed by `m`.
    #[inline]
    pub fn transform_by(&self, m: &Isometry<Real>) -> Self {
        let ls_center = self.center();
        let center = m * ls_center;
        let ws_half_extents = m.absolute_transform_vector(&self.half_extents());

        Aabb::new(center + (-ws_half_extents), center + ws_half_extents)
    }

    #[inline]
    pub fn scaled(self, scale: &Vector<Real>) -> Self {
        let a = self.mins.coords.component_mul(scale);
        let b = self.maxs.coords.component_mul(scale);
        Self {
            mins: a.inf(&b).into(),
            maxs: a.sup(&b).into(),
        }
    }

    /// Returns an AABB with the same center as `self` but with extents scaled by `scale`.
    ///
    /// # Parameters
    /// - `scale`: the scaling factor. It can be non-uniform and/or negative. The AABB being
    ///            symmetric wrt. its center, a negative scale value has the same effect as scaling
    ///            by its absolute value.
    #[inline]
    #[must_use]
    pub fn scaled_wrt_center(self, scale: &Vector<Real>) -> Self {
        let center = self.center();
        // Multiply the extents by the scale. Negative scaling might modify the half-extent
        // sign, so we take the absolute value. The AABB being symmetric that absolute value
        // is  valid.
        let half_extents = self.half_extents().component_mul(scale).abs();
        Self::from_half_extents(center, half_extents)
    }

    /// The smallest bounding sphere containing this `Aabb`.
    #[inline]
    pub fn bounding_sphere(&self) -> BoundingSphere {
        let center = self.center();
        let radius = na::distance(&self.mins, &self.maxs) * 0.5;
        BoundingSphere::new(center, radius)
    }

    /// Does this AABB contains a point expressed in the same coordinate frame as `self`?
    #[inline]
    pub fn contains_local_point(&self, point: &Point<Real>) -> bool {
        for i in 0..DIM {
            if point[i] < self.mins[i] || point[i] > self.maxs[i] {
                return false;
            }
        }

        true
    }

    /// Does this AABB intersects an AABB `aabb2` moving at velocity `vel12` relative to `self`?
    #[inline]
    pub fn intersects_moving_aabb(&self, aabb2: &Self, vel12: Vector<Real>) -> bool {
        // Minkowski sum.
        let msum = Aabb {
            mins: self.mins - aabb2.maxs.coords,
            maxs: self.maxs - aabb2.mins.coords,
        };
        let ray = Ray::new(Point::origin(), vel12);

        msum.intersects_local_ray(&ray, 1.0)
    }

    /// Computes the intersection of this `Aabb` and another one.
    pub fn intersection(&self, other: &Aabb) -> Option<Aabb> {
        let result = Aabb {
            mins: Point::from(self.mins.coords.sup(&other.mins.coords)),
            maxs: Point::from(self.maxs.coords.inf(&other.maxs.coords)),
        };

        for i in 0..DIM {
            if result.mins[i] > result.maxs[i] {
                return None;
            }
        }

        Some(result)
    }

    /// Returns the difference between this `Aabb` and `rhs`.
    ///
    /// Removing another `Aabb` from `self` will result in zero, one, or up to 4 (in 2D) or 8 (in 3D)
    /// new smaller Aabbs.
    pub fn difference(&self, rhs: &Aabb) -> ArrayVec<Self, TWO_DIM> {
        self.difference_with_cut_sequence(rhs).0
    }

    /// Returns the difference between this `Aabb` and `rhs`.
    ///
    /// Removing another `Aabb` from `self` will result in zero, one, or up to 4 (in 2D) or 8 (in 3D)
    /// new smaller Aabbs.
    ///
    /// # Return
    /// This returns a pair where the first item are the new Aabbs and the the second item is
    /// the sequance of cuts applied to `self` to obtain the new Aabbs. Each cut is performed
    /// along one axis identified by `-1, -2, -3` for `-X, -Y, -Z` and `1, 2, 3` for `+X, +Y, +Z`, and
    /// the plane’s bias.
    /// The cuts are applied sequancially. For example, if `result.1[0]` contains `1`, then it means
    /// that `result.0[0]` is equal to the piece of `self` lying in the negative half-space delimited
    /// by the plane with outward normal `+X`. Then, the other piece of `self` generated by this cut
    /// (i.e. the piece of `self` lying in the positive half-space delimited by the plane with outward
    /// normal `+X`) is the one that will be affected by the next cut.
    ///
    /// The returned cut sequence will be empty if the aabbs are disjoint.
    pub fn difference_with_cut_sequence(
        &self,
        rhs: &Aabb,
    ) -> (ArrayVec<Self, TWO_DIM>, ArrayVec<(i8, Real), TWO_DIM>) {
        let mut result = ArrayVec::new();
        let mut cut_sequence = ArrayVec::new();

        // NOTE: special case when the boxes are disjoint.
        //       This isn’t exactly the same as `!self.intersects(rhs)`
        //       because of the equality.
        for i in 0..DIM {
            if self.mins[i] >= rhs.maxs[i] || self.maxs[i] <= rhs.mins[i] {
                result.push(*self);
                return (result, cut_sequence);
            }
        }

        let mut rest = *self;

        for i in 0..DIM {
            if rhs.mins[i] > rest.mins[i] {
                let mut fragment = rest;
                fragment.maxs[i] = rhs.mins[i];
                rest.mins[i] = rhs.mins[i];
                result.push(fragment);
                cut_sequence.push((i as i8 + 1, rhs.mins[i]));
            }

            if rhs.maxs[i] < rest.maxs[i] {
                let mut fragment = rest;
                fragment.mins[i] = rhs.maxs[i];
                rest.maxs[i] = rhs.maxs[i];
                result.push(fragment);
                cut_sequence.push((-(i as i8 + 1), -rhs.maxs[i]));
            }
        }

        (result, cut_sequence)
    }

    /// Computes the vertices of this `Aabb`.
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn vertices(&self) -> [Point<Real>; 4] {
        [
            Point::new(self.mins.x, self.mins.y),
            Point::new(self.mins.x, self.maxs.y),
            Point::new(self.maxs.x, self.mins.y),
            Point::new(self.maxs.x, self.maxs.y),
        ]
    }

    /// Computes the vertices of this `Aabb`.
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn vertices(&self) -> [Point<Real>; 8] {
        [
            Point::new(self.mins.x, self.mins.y, self.mins.z),
            Point::new(self.maxs.x, self.mins.y, self.mins.z),
            Point::new(self.maxs.x, self.maxs.y, self.mins.z),
            Point::new(self.mins.x, self.maxs.y, self.mins.z),
            Point::new(self.mins.x, self.mins.y, self.maxs.z),
            Point::new(self.maxs.x, self.mins.y, self.maxs.z),
            Point::new(self.maxs.x, self.maxs.y, self.maxs.z),
            Point::new(self.mins.x, self.maxs.y, self.maxs.z),
        ]
    }

    /// Splits this `Aabb` at its center, into four parts (as in a quad-tree).
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn split_at_center(&self) -> [Aabb; 4] {
        let center = self.center();

        [
            Aabb::new(self.mins, center),
            Aabb::new(
                Point::new(center.x, self.mins.y),
                Point::new(self.maxs.x, center.y),
            ),
            Aabb::new(center, self.maxs),
            Aabb::new(
                Point::new(self.mins.x, center.y),
                Point::new(center.x, self.maxs.y),
            ),
        ]
    }

    /// Splits this `Aabb` at its center, into eight parts (as in an octree).
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn split_at_center(&self) -> [Aabb; 8] {
        let center = self.center();

        [
            Aabb::new(
                Point::new(self.mins.x, self.mins.y, self.mins.z),
                Point::new(center.x, center.y, center.z),
            ),
            Aabb::new(
                Point::new(center.x, self.mins.y, self.mins.z),
                Point::new(self.maxs.x, center.y, center.z),
            ),
            Aabb::new(
                Point::new(center.x, center.y, self.mins.z),
                Point::new(self.maxs.x, self.maxs.y, center.z),
            ),
            Aabb::new(
                Point::new(self.mins.x, center.y, self.mins.z),
                Point::new(center.x, self.maxs.y, center.z),
            ),
            Aabb::new(
                Point::new(self.mins.x, self.mins.y, center.z),
                Point::new(center.x, center.y, self.maxs.z),
            ),
            Aabb::new(
                Point::new(center.x, self.mins.y, center.z),
                Point::new(self.maxs.x, center.y, self.maxs.z),
            ),
            Aabb::new(
                Point::new(center.x, center.y, center.z),
                Point::new(self.maxs.x, self.maxs.y, self.maxs.z),
            ),
            Aabb::new(
                Point::new(self.mins.x, center.y, center.z),
                Point::new(center.x, self.maxs.y, self.maxs.z),
            ),
        ]
    }

    /// Projects every point of `Aabb` on an arbitrary axis.
    pub fn project_on_axis(&self, axis: &UnitVector<Real>) -> (Real, Real) {
        let cuboid = Cuboid::new(self.half_extents());
        let shift = cuboid
            .local_support_point_toward(axis)
            .coords
            .dot(axis)
            .abs();
        let center = self.center().coords.dot(axis);
        (center - shift, center + shift)
    }

    #[cfg(feature = "dim3")]
    #[cfg(feature = "std")]
    pub fn intersects_spiral(
        &self,
        point: &Point<Real>,
        center: &Point<Real>,
        axis: &UnitVector<Real>,
        linvel: &Vector<Real>,
        angvel: Real,
    ) -> bool {
        use crate::utils::WBasis;
        use crate::utils::{Interval, IntervalFunction};

        struct SpiralPlaneDistance {
            center: Point<Real>,
            tangents: [Vector<Real>; 2],
            linvel: Vector<Real>,
            angvel: Real,
            point: na::Vector2<Real>,
            plane: Vector<Real>,
            bias: Real,
        }

        impl SpiralPlaneDistance {
            fn spiral_pt_at(&self, t: Real) -> Point<Real> {
                let angle = t * self.angvel;

                // NOTE: we construct the rotation matrix explicitly here instead
                //       of using `Rotation2::new()` because we will use similar
                //       formulaes on the interval methods.
                let (sin, cos) = angle.sin_cos();
                let rotmat = na::Matrix2::new(cos, -sin, sin, cos);

                let rotated_pt = rotmat * self.point;
                let shift = self.tangents[0] * rotated_pt.x + self.tangents[1] * rotated_pt.y;
                self.center + self.linvel * t + shift
            }
        }

        impl IntervalFunction<Real> for SpiralPlaneDistance {
            fn eval(&self, t: Real) -> Real {
                let point_pos = self.spiral_pt_at(t);
                point_pos.coords.dot(&self.plane) - self.bias
            }

            fn eval_interval(&self, t: Interval<Real>) -> Interval<Real> {
                // This is the same as `self.eval` except that `t` is an interval.
                let angle = t * self.angvel;
                let (sin, cos) = angle.sin_cos();
                let rotmat = na::Matrix2::new(cos, -sin, sin, cos);

                let rotated_pt = rotmat * self.point.map(Interval::splat);
                let shift = self.tangents[0].map(Interval::splat) * rotated_pt.x
                    + self.tangents[1].map(Interval::splat) * rotated_pt.y;
                let point_pos =
                    self.center.map(Interval::splat) + self.linvel.map(Interval::splat) * t + shift;
                point_pos.coords.dot(&self.plane.map(Interval::splat)) - Interval::splat(self.bias)
            }

            fn eval_interval_gradient(&self, t: Interval<Real>) -> Interval<Real> {
                let angle = t * self.angvel;
                let (sin, cos) = angle.sin_cos();
                let rotmat = na::Matrix2::new(-sin, -cos, cos, -sin) * Interval::splat(self.angvel);

                let rotated_pt = rotmat * self.point.map(Interval::splat);
                let shift = self.tangents[0].map(Interval::splat) * rotated_pt.x
                    + self.tangents[1].map(Interval::splat) * rotated_pt.y;
                let point_vel = shift + self.linvel.map(Interval::splat);
                point_vel.dot(&self.plane.map(Interval::splat))
            }
        }

        let tangents = axis.orthonormal_basis();
        let dpos = point - center;
        let mut distance_fn = SpiralPlaneDistance {
            center: *center,
            tangents,
            linvel: *linvel,
            angvel,
            point: na::Vector2::new(dpos.dot(&tangents[0]), dpos.dot(&tangents[1])),
            plane: Vector::x(),
            bias: 0.0,
        };

        // Check the 8 planar faces of the Aabb.
        let mut roots = vec![];
        let mut candidates = vec![];

        let planes = [
            (-self.mins[0], -Vector::x(), 0),
            (self.maxs[0], Vector::x(), 0),
            (-self.mins[1], -Vector::y(), 1),
            (self.maxs[1], Vector::y(), 1),
            (-self.mins[2], -Vector::z(), 2),
            (self.maxs[2], Vector::z(), 2),
        ];

        let range = self.project_on_axis(axis);
        let range_bias = center.coords.dot(axis);
        let interval = Interval::sort(range.0, range.1) - range_bias;

        for (bias, axis, i) in &planes {
            distance_fn.plane = *axis;
            distance_fn.bias = *bias;

            crate::utils::find_root_intervals_to(
                &distance_fn,
                interval,
                1.0e-5,
                1.0e-5,
                100,
                &mut roots,
                &mut candidates,
            );

            for root in roots.drain(..) {
                let point = distance_fn.spiral_pt_at(root.midpoint());
                let (j, k) = ((i + 1) % 3, (i + 2) % 3);
                if point[j] >= self.mins[j]
                    && point[j] <= self.maxs[j]
                    && point[k] >= self.mins[k]
                    && point[k] <= self.maxs[k]
                {
                    return true;
                }
            }
        }

        false
    }
}

impl BoundingVolume for Aabb {
    #[inline]
    fn center(&self) -> Point<Real> {
        self.center()
    }

    #[inline]
    fn intersects(&self, other: &Aabb) -> bool {
        na::partial_le(&self.mins, &other.maxs) && na::partial_ge(&self.maxs, &other.mins)
    }

    #[inline]
    fn contains(&self, other: &Aabb) -> bool {
        na::partial_le(&self.mins, &other.mins) && na::partial_ge(&self.maxs, &other.maxs)
    }

    #[inline]
    fn merge(&mut self, other: &Aabb) {
        self.mins = self.mins.inf(&other.mins);
        self.maxs = self.maxs.sup(&other.maxs);
    }

    #[inline]
    fn merged(&self, other: &Aabb) -> Aabb {
        Aabb {
            mins: self.mins.inf(&other.mins),
            maxs: self.maxs.sup(&other.maxs),
        }
    }

    #[inline]
    fn loosen(&mut self, amount: Real) {
        assert!(amount >= 0.0, "The loosening margin must be positive.");
        self.mins += Vector::repeat(-amount);
        self.maxs += Vector::repeat(amount);
    }

    #[inline]
    fn loosened(&self, amount: Real) -> Aabb {
        assert!(amount >= 0.0, "The loosening margin must be positive.");
        Aabb {
            mins: self.mins + Vector::repeat(-amount),
            maxs: self.maxs + Vector::repeat(amount),
        }
    }

    #[inline]
    fn tighten(&mut self, amount: Real) {
        assert!(amount >= 0.0, "The tightening margin must be positive.");
        self.mins += Vector::repeat(amount);
        self.maxs += Vector::repeat(-amount);
        assert!(
            na::partial_le(&self.mins, &self.maxs),
            "The tightening margin is to large."
        );
    }

    #[inline]
    fn tightened(&self, amount: Real) -> Aabb {
        assert!(amount >= 0.0, "The tightening margin must be positive.");

        Aabb::new(
            self.mins + Vector::repeat(amount),
            self.maxs + Vector::repeat(-amount),
        )
    }
}