parry3d/bounding_volume/aabb.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
//! Axis Aligned Bounding Box.
use crate::bounding_volume::{BoundingSphere, BoundingVolume};
use crate::math::{Isometry, Point, Real, UnitVector, Vector, DIM, TWO_DIM};
use crate::shape::{Cuboid, SupportMap};
use crate::utils::IsometryOps;
use arrayvec::ArrayVec;
use na;
use num::Bounded;
#[cfg(all(feature = "dim3", not(feature = "std")))]
use na::ComplexField; // for .sin_cos()
use crate::query::{Ray, RayCast};
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};
/// An Axis Aligned Bounding Box.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(bytemuck::Pod, bytemuck::Zeroable))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(Debug, PartialEq, Copy, Clone)]
#[repr(C)]
pub struct Aabb {
pub mins: Point<Real>,
pub maxs: Point<Real>,
}
impl Aabb {
/// The vertex indices of each edge of this `Aabb`.
///
/// This gives, for each edge of this `Aabb`, the indices of its
/// vertices when taken from the `self.vertices()` array.
/// Here is how the faces are numbered, assuming
/// a right-handed coordinate system:
///
/// ```text
/// y 3 - 2
/// | 7 − 6 |
/// ___ x | | 1 (the zero is below 3 and on the left of 1,
/// / 4 - 5 hidden by the 4-5-6-7 face.)
/// z
/// ```
#[cfg(feature = "dim3")]
pub const EDGES_VERTEX_IDS: [(usize, usize); 12] = [
(0, 1),
(1, 2),
(3, 2),
(0, 3),
(4, 5),
(5, 6),
(7, 6),
(4, 7),
(0, 4),
(1, 5),
(2, 6),
(3, 7),
];
/// The vertex indices of each face of this `Aabb`.
///
/// This gives, for each face of this `Aabb`, the indices of its
/// vertices when taken from the `self.vertices()` array.
/// Here is how the faces are numbered, assuming
/// a right-handed coordinate system:
///
/// ```text
/// y 3 - 2
/// | 7 − 6 |
/// ___ x | | 1 (the zero is below 3 and on the left of 1,
/// / 4 - 5 hidden by the 4-5-6-7 face.)
/// z
/// ```
#[cfg(feature = "dim3")]
pub const FACES_VERTEX_IDS: [(usize, usize, usize, usize); 6] = [
// Face with normal +X
(1, 2, 6, 5),
// Face with normal -X
(0, 3, 7, 4),
// Face with normal +Y
(2, 3, 7, 6),
// Face with normal -Y
(1, 0, 4, 5),
// Face with normal +Z
(4, 5, 6, 7),
// Face with normal -Z
(0, 1, 2, 3),
];
/// The vertex indices of each face of this `Aabb`.
///
/// This gives, for each face of this `Aabb`, the indices of its
/// vertices when taken from the `self.vertices()` array.
/// Here is how the faces are numbered, assuming
/// a right-handed coordinate system:
///
/// ```text
/// y 3 - 2
/// | | |
/// ___ x 0 - 1
/// ```
#[cfg(feature = "dim2")]
pub const FACES_VERTEX_IDS: [(usize, usize); 4] = [
// Face with normal +X
(1, 2),
// Face with normal -X
(3, 0),
// Face with normal +Y
(2, 3),
// Face with normal -Y
(0, 1),
];
/// Creates a new Aabb.
///
/// # Arguments:
/// * `mins` - position of the point with the smallest coordinates.
/// * `maxs` - position of the point with the highest coordinates. Each component of `mins`
/// must be smaller than the related components of `maxs`.
#[inline]
pub fn new(mins: Point<Real>, maxs: Point<Real>) -> Aabb {
Aabb { mins, maxs }
}
/// Creates an invalid `Aabb` with `mins` components set to `Real::max_values` and `maxs`components set to `-Real::max_values`.
///
/// This is often used as the initial values of some `Aabb` merging algorithms.
#[inline]
pub fn new_invalid() -> Self {
Self::new(
Vector::repeat(Real::max_value()).into(),
Vector::repeat(-Real::max_value()).into(),
)
}
/// Creates a new `Aabb` from its center and its half-extents.
#[inline]
pub fn from_half_extents(center: Point<Real>, half_extents: Vector<Real>) -> Self {
Self::new(center - half_extents, center + half_extents)
}
/// Creates a new `Aabb` from a set of points.
pub fn from_points<'a, I>(pts: I) -> Self
where
I: IntoIterator<Item = &'a Point<Real>>,
{
super::aabb_utils::local_point_cloud_aabb(pts)
}
/// The center of this `Aabb`.
#[inline]
pub fn center(&self) -> Point<Real> {
na::center(&self.mins, &self.maxs)
}
/// The half extents of this `Aabb`.
#[inline]
pub fn half_extents(&self) -> Vector<Real> {
let half: Real = na::convert::<f64, Real>(0.5);
(self.maxs - self.mins) * half
}
/// The volume of this `Aabb`.
#[inline]
pub fn volume(&self) -> Real {
let extents = self.extents();
#[cfg(feature = "dim2")]
return extents.x * extents.y;
#[cfg(feature = "dim3")]
return extents.x * extents.y * extents.z;
}
/// The extents of this `Aabb`.
#[inline]
pub fn extents(&self) -> Vector<Real> {
self.maxs - self.mins
}
/// Enlarges this `Aabb` so it also contains the point `pt`.
pub fn take_point(&mut self, pt: Point<Real>) {
self.mins = self.mins.coords.inf(&pt.coords).into();
self.maxs = self.maxs.coords.sup(&pt.coords).into();
}
/// Computes the `Aabb` bounding `self` transformed by `m`.
#[inline]
pub fn transform_by(&self, m: &Isometry<Real>) -> Self {
let ls_center = self.center();
let center = m * ls_center;
let ws_half_extents = m.absolute_transform_vector(&self.half_extents());
Aabb::new(center + (-ws_half_extents), center + ws_half_extents)
}
/// Computes the Aabb bounding `self` translated by `translation`.
#[inline]
pub fn translated(mut self, translation: &Vector<Real>) -> Self {
self.mins += translation;
self.maxs += translation;
self
}
#[inline]
pub fn scaled(self, scale: &Vector<Real>) -> Self {
let a = self.mins.coords.component_mul(scale);
let b = self.maxs.coords.component_mul(scale);
Self {
mins: a.inf(&b).into(),
maxs: a.sup(&b).into(),
}
}
/// Returns an AABB with the same center as `self` but with extents scaled by `scale`.
///
/// # Parameters
/// - `scale`: the scaling factor. It can be non-uniform and/or negative. The AABB being
/// symmetric wrt. its center, a negative scale value has the same effect as scaling
/// by its absolute value.
#[inline]
#[must_use]
pub fn scaled_wrt_center(self, scale: &Vector<Real>) -> Self {
let center = self.center();
// Multiply the extents by the scale. Negative scaling might modify the half-extent
// sign, so we take the absolute value. The AABB being symmetric that absolute value
// is valid.
let half_extents = self.half_extents().component_mul(scale).abs();
Self::from_half_extents(center, half_extents)
}
/// The smallest bounding sphere containing this `Aabb`.
#[inline]
pub fn bounding_sphere(&self) -> BoundingSphere {
let center = self.center();
let radius = na::distance(&self.mins, &self.maxs) * 0.5;
BoundingSphere::new(center, radius)
}
/// Does this AABB contains a point expressed in the same coordinate frame as `self`?
#[inline]
pub fn contains_local_point(&self, point: &Point<Real>) -> bool {
for i in 0..DIM {
if point[i] < self.mins[i] || point[i] > self.maxs[i] {
return false;
}
}
true
}
/// Does this AABB intersects an AABB `aabb2` moving at velocity `vel12` relative to `self`?
#[inline]
pub fn intersects_moving_aabb(&self, aabb2: &Self, vel12: Vector<Real>) -> bool {
// Minkowski sum.
let msum = Aabb {
mins: self.mins - aabb2.maxs.coords,
maxs: self.maxs - aabb2.mins.coords,
};
let ray = Ray::new(Point::origin(), vel12);
msum.intersects_local_ray(&ray, 1.0)
}
/// Computes the intersection of this `Aabb` and another one.
pub fn intersection(&self, other: &Aabb) -> Option<Aabb> {
let result = Aabb {
mins: Point::from(self.mins.coords.sup(&other.mins.coords)),
maxs: Point::from(self.maxs.coords.inf(&other.maxs.coords)),
};
for i in 0..DIM {
if result.mins[i] > result.maxs[i] {
return None;
}
}
Some(result)
}
/// Computes two AABBs for the intersection between two translated and rotated AABBs.
///
/// This method returns two AABBs: the first is expressed in the local-space of `self`,
/// and the second is expressed in the local-space of `aabb2`.
pub fn aligned_intersections(
&self,
pos12: &Isometry<Real>,
aabb2: &Self,
) -> Option<(Aabb, Aabb)> {
let pos21 = pos12.inverse();
let aabb2_1 = aabb2.transform_by(pos12);
let inter1_1 = self.intersection(&aabb2_1)?;
let inter1_2 = inter1_1.transform_by(&pos21);
let aabb1_2 = self.transform_by(&pos21);
let inter2_2 = aabb2.intersection(&aabb1_2)?;
let inter2_1 = inter2_2.transform_by(pos12);
Some((
inter1_1.intersection(&inter2_1)?,
inter1_2.intersection(&inter2_2)?,
))
}
/// Returns the difference between this `Aabb` and `rhs`.
///
/// Removing another `Aabb` from `self` will result in zero, one, or up to 4 (in 2D) or 8 (in 3D)
/// new smaller Aabbs.
pub fn difference(&self, rhs: &Aabb) -> ArrayVec<Self, TWO_DIM> {
self.difference_with_cut_sequence(rhs).0
}
/// Returns the difference between this `Aabb` and `rhs`.
///
/// Removing another `Aabb` from `self` will result in zero, one, or up to 4 (in 2D) or 8 (in 3D)
/// new smaller Aabbs.
///
/// # Return
/// This returns a pair where the first item are the new Aabbs and the second item is
/// the sequence of cuts applied to `self` to obtain the new Aabbs. Each cut is performed
/// along one axis identified by `-1, -2, -3` for `-X, -Y, -Z` and `1, 2, 3` for `+X, +Y, +Z`, and
/// the plane’s bias.
///
/// The cuts are applied sequentially. For example, if `result.1[0]` contains `1`, then it means
/// that `result.0[0]` is equal to the piece of `self` lying in the negative half-space delimited
/// by the plane with outward normal `+X`. Then, the other piece of `self` generated by this cut
/// (i.e. the piece of `self` lying in the positive half-space delimited by the plane with outward
/// normal `+X`) is the one that will be affected by the next cut.
///
/// The returned cut sequence will be empty if the aabbs are disjoint.
pub fn difference_with_cut_sequence(
&self,
rhs: &Aabb,
) -> (ArrayVec<Self, TWO_DIM>, ArrayVec<(i8, Real), TWO_DIM>) {
let mut result = ArrayVec::new();
let mut cut_sequence = ArrayVec::new();
// NOTE: special case when the boxes are disjoint.
// This isn’t exactly the same as `!self.intersects(rhs)`
// because of the equality.
for i in 0..DIM {
if self.mins[i] >= rhs.maxs[i] || self.maxs[i] <= rhs.mins[i] {
result.push(*self);
return (result, cut_sequence);
}
}
let mut rest = *self;
for i in 0..DIM {
if rhs.mins[i] > rest.mins[i] {
let mut fragment = rest;
fragment.maxs[i] = rhs.mins[i];
rest.mins[i] = rhs.mins[i];
result.push(fragment);
cut_sequence.push((i as i8 + 1, rhs.mins[i]));
}
if rhs.maxs[i] < rest.maxs[i] {
let mut fragment = rest;
fragment.mins[i] = rhs.maxs[i];
rest.maxs[i] = rhs.maxs[i];
result.push(fragment);
cut_sequence.push((-(i as i8 + 1), -rhs.maxs[i]));
}
}
(result, cut_sequence)
}
/// Computes the vertices of this `Aabb`.
///
/// The vertices are given in the following order in a right-handed coordinate system:
/// ```text
/// y 3 - 2
/// | | |
/// ___ x 0 - 1
/// ```
#[inline]
#[cfg(feature = "dim2")]
pub fn vertices(&self) -> [Point<Real>; 4] {
[
Point::new(self.mins.x, self.mins.y),
Point::new(self.maxs.x, self.mins.y),
Point::new(self.maxs.x, self.maxs.y),
Point::new(self.mins.x, self.maxs.y),
]
}
/// Computes the vertices of this `Aabb`.
///
/// The vertices are given in the following order, in a right-handed coordinate system:
/// ```text
/// y 3 - 2
/// | 7 − 6 |
/// ___ x | | 1 (the zero is below 3 and on the left of 1,
/// / 4 - 5 hidden by the 4-5-6-7 face.)
/// z
/// ```
#[inline]
#[cfg(feature = "dim3")]
pub fn vertices(&self) -> [Point<Real>; 8] {
[
Point::new(self.mins.x, self.mins.y, self.mins.z),
Point::new(self.maxs.x, self.mins.y, self.mins.z),
Point::new(self.maxs.x, self.maxs.y, self.mins.z),
Point::new(self.mins.x, self.maxs.y, self.mins.z),
Point::new(self.mins.x, self.mins.y, self.maxs.z),
Point::new(self.maxs.x, self.mins.y, self.maxs.z),
Point::new(self.maxs.x, self.maxs.y, self.maxs.z),
Point::new(self.mins.x, self.maxs.y, self.maxs.z),
]
}
/// Splits this `Aabb` at its center, into four parts (as in a quad-tree).
#[inline]
#[cfg(feature = "dim2")]
pub fn split_at_center(&self) -> [Aabb; 4] {
let center = self.center();
[
Aabb::new(self.mins, center),
Aabb::new(
Point::new(center.x, self.mins.y),
Point::new(self.maxs.x, center.y),
),
Aabb::new(center, self.maxs),
Aabb::new(
Point::new(self.mins.x, center.y),
Point::new(center.x, self.maxs.y),
),
]
}
/// Splits this `Aabb` at its center, into eight parts (as in an octree).
#[inline]
#[cfg(feature = "dim3")]
pub fn split_at_center(&self) -> [Aabb; 8] {
let center = self.center();
[
Aabb::new(
Point::new(self.mins.x, self.mins.y, self.mins.z),
Point::new(center.x, center.y, center.z),
),
Aabb::new(
Point::new(center.x, self.mins.y, self.mins.z),
Point::new(self.maxs.x, center.y, center.z),
),
Aabb::new(
Point::new(center.x, center.y, self.mins.z),
Point::new(self.maxs.x, self.maxs.y, center.z),
),
Aabb::new(
Point::new(self.mins.x, center.y, self.mins.z),
Point::new(center.x, self.maxs.y, center.z),
),
Aabb::new(
Point::new(self.mins.x, self.mins.y, center.z),
Point::new(center.x, center.y, self.maxs.z),
),
Aabb::new(
Point::new(center.x, self.mins.y, center.z),
Point::new(self.maxs.x, center.y, self.maxs.z),
),
Aabb::new(
Point::new(center.x, center.y, center.z),
Point::new(self.maxs.x, self.maxs.y, self.maxs.z),
),
Aabb::new(
Point::new(self.mins.x, center.y, center.z),
Point::new(center.x, self.maxs.y, self.maxs.z),
),
]
}
/// Projects every point of `Aabb` on an arbitrary axis.
pub fn project_on_axis(&self, axis: &UnitVector<Real>) -> (Real, Real) {
let cuboid = Cuboid::new(self.half_extents());
let shift = cuboid
.local_support_point_toward(axis)
.coords
.dot(axis)
.abs();
let center = self.center().coords.dot(axis);
(center - shift, center + shift)
}
#[cfg(feature = "dim3")]
#[cfg(feature = "alloc")]
pub fn intersects_spiral(
&self,
point: &Point<Real>,
center: &Point<Real>,
axis: &UnitVector<Real>,
linvel: &Vector<Real>,
angvel: Real,
) -> bool {
use crate::utils::WBasis;
use crate::utils::{Interval, IntervalFunction};
use alloc::vec;
struct SpiralPlaneDistance {
center: Point<Real>,
tangents: [Vector<Real>; 2],
linvel: Vector<Real>,
angvel: Real,
point: na::Vector2<Real>,
plane: Vector<Real>,
bias: Real,
}
impl SpiralPlaneDistance {
fn spiral_pt_at(&self, t: Real) -> Point<Real> {
let angle = t * self.angvel;
// NOTE: we construct the rotation matrix explicitly here instead
// of using `Rotation2::new()` because we will use similar
// formulas on the interval methods.
let (sin, cos) = angle.sin_cos();
let rotmat = na::Matrix2::new(cos, -sin, sin, cos);
let rotated_pt = rotmat * self.point;
let shift = self.tangents[0] * rotated_pt.x + self.tangents[1] * rotated_pt.y;
self.center + self.linvel * t + shift
}
}
impl IntervalFunction<Real> for SpiralPlaneDistance {
fn eval(&self, t: Real) -> Real {
let point_pos = self.spiral_pt_at(t);
point_pos.coords.dot(&self.plane) - self.bias
}
fn eval_interval(&self, t: Interval<Real>) -> Interval<Real> {
// This is the same as `self.eval` except that `t` is an interval.
let angle = t * self.angvel;
let (sin, cos) = angle.sin_cos();
let rotmat = na::Matrix2::new(cos, -sin, sin, cos);
let rotated_pt = rotmat * self.point.map(Interval::splat);
let shift = self.tangents[0].map(Interval::splat) * rotated_pt.x
+ self.tangents[1].map(Interval::splat) * rotated_pt.y;
let point_pos =
self.center.map(Interval::splat) + self.linvel.map(Interval::splat) * t + shift;
point_pos.coords.dot(&self.plane.map(Interval::splat)) - Interval::splat(self.bias)
}
fn eval_interval_gradient(&self, t: Interval<Real>) -> Interval<Real> {
let angle = t * self.angvel;
let (sin, cos) = angle.sin_cos();
let rotmat = na::Matrix2::new(-sin, -cos, cos, -sin) * Interval::splat(self.angvel);
let rotated_pt = rotmat * self.point.map(Interval::splat);
let shift = self.tangents[0].map(Interval::splat) * rotated_pt.x
+ self.tangents[1].map(Interval::splat) * rotated_pt.y;
let point_vel = shift + self.linvel.map(Interval::splat);
point_vel.dot(&self.plane.map(Interval::splat))
}
}
let tangents = axis.orthonormal_basis();
let dpos = point - center;
let mut distance_fn = SpiralPlaneDistance {
center: *center,
tangents,
linvel: *linvel,
angvel,
point: na::Vector2::new(dpos.dot(&tangents[0]), dpos.dot(&tangents[1])),
plane: Vector::x(),
bias: 0.0,
};
// Check the 8 planar faces of the Aabb.
let mut roots = vec![];
let mut candidates = vec![];
let planes = [
(-self.mins[0], -Vector::x(), 0),
(self.maxs[0], Vector::x(), 0),
(-self.mins[1], -Vector::y(), 1),
(self.maxs[1], Vector::y(), 1),
(-self.mins[2], -Vector::z(), 2),
(self.maxs[2], Vector::z(), 2),
];
let range = self.project_on_axis(axis);
let range_bias = center.coords.dot(axis);
let interval = Interval::sort(range.0, range.1) - range_bias;
for (bias, axis, i) in &planes {
distance_fn.plane = *axis;
distance_fn.bias = *bias;
crate::utils::find_root_intervals_to(
&distance_fn,
interval,
1.0e-5,
1.0e-5,
100,
&mut roots,
&mut candidates,
);
for root in roots.drain(..) {
let point = distance_fn.spiral_pt_at(root.midpoint());
let (j, k) = ((i + 1) % 3, (i + 2) % 3);
if point[j] >= self.mins[j]
&& point[j] <= self.maxs[j]
&& point[k] >= self.mins[k]
&& point[k] <= self.maxs[k]
{
return true;
}
}
}
false
}
}
impl BoundingVolume for Aabb {
#[inline]
fn center(&self) -> Point<Real> {
self.center()
}
#[inline]
fn intersects(&self, other: &Aabb) -> bool {
na::partial_le(&self.mins, &other.maxs) && na::partial_ge(&self.maxs, &other.mins)
}
#[inline]
fn contains(&self, other: &Aabb) -> bool {
na::partial_le(&self.mins, &other.mins) && na::partial_ge(&self.maxs, &other.maxs)
}
#[inline]
fn merge(&mut self, other: &Aabb) {
self.mins = self.mins.inf(&other.mins);
self.maxs = self.maxs.sup(&other.maxs);
}
#[inline]
fn merged(&self, other: &Aabb) -> Aabb {
Aabb {
mins: self.mins.inf(&other.mins),
maxs: self.maxs.sup(&other.maxs),
}
}
#[inline]
fn loosen(&mut self, amount: Real) {
assert!(amount >= 0.0, "The loosening margin must be positive.");
self.mins += Vector::repeat(-amount);
self.maxs += Vector::repeat(amount);
}
#[inline]
fn loosened(&self, amount: Real) -> Aabb {
assert!(amount >= 0.0, "The loosening margin must be positive.");
Aabb {
mins: self.mins + Vector::repeat(-amount),
maxs: self.maxs + Vector::repeat(amount),
}
}
#[inline]
fn tighten(&mut self, amount: Real) {
assert!(amount >= 0.0, "The tightening margin must be positive.");
self.mins += Vector::repeat(amount);
self.maxs += Vector::repeat(-amount);
assert!(
na::partial_le(&self.mins, &self.maxs),
"The tightening margin is to large."
);
}
#[inline]
fn tightened(&self, amount: Real) -> Aabb {
assert!(amount >= 0.0, "The tightening margin must be positive.");
Aabb::new(
self.mins + Vector::repeat(amount),
self.maxs + Vector::repeat(-amount),
)
}
}