1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
use crate::math::{AngVector, AngularInertia, Isometry, Point, Real, Rotation, Vector};
use crate::utils;
use na::ComplexField;
use num::Zero;
use std::ops::{Add, AddAssign, Sub, SubAssign};
#[cfg(feature = "dim3")]
use {na::Matrix3, std::ops::MulAssign};

#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

const EPSILON: Real = f32::EPSILON as Real;

#[derive(Copy, Clone, Debug, Default, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
/// The local mass properties of a rigid-body.
pub struct MassProperties {
    /// The center of mass of a rigid-body expressed in its local-space.
    pub local_com: Point<Real>,
    /// The inverse of the mass of a rigid-body.
    ///
    /// If this is zero, the rigid-body is assumed to have infinite mass.
    pub inv_mass: Real,
    /// The inverse of the principal angular inertia of the rigid-body.
    ///
    /// The angular inertia is calculated relative to [`Self::local_com`].
    /// Components set to zero are assumed to be infinite along the corresponding principal axis.
    pub inv_principal_inertia_sqrt: AngVector<Real>,
    #[cfg(feature = "dim3")]
    /// The principal vectors of the local angular inertia tensor of the rigid-body.
    pub principal_inertia_local_frame: Rotation<Real>,
}

impl MassProperties {
    /// Initializes the mass properties with the given center-of-mass, mass, and angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    #[cfg(feature = "dim2")]
    pub fn new(local_com: Point<Real>, mass: Real, principal_inertia: Real) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt = utils::inv(ComplexField::sqrt(principal_inertia));
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    /// Initializes the mass properties from the given center-of-mass, mass, and principal angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    /// The principal angular inertia are the angular inertia along the coordinate axes in the local-space
    /// of the rigid-body.
    #[cfg(feature = "dim3")]
    pub fn new(local_com: Point<Real>, mass: Real, principal_inertia: AngVector<Real>) -> Self {
        Self::with_principal_inertia_frame(local_com, mass, principal_inertia, Rotation::identity())
    }

    /// Initializes the mass properties from the given center-of-mass, mass, and principal angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    /// The principal angular inertia are the angular inertia along the coordinate axes defined by
    /// the `principal_inertia_local_frame` expressed in the local-space of the rigid-body.
    #[cfg(feature = "dim3")]
    pub fn with_principal_inertia_frame(
        local_com: Point<Real>,
        mass: Real,
        principal_inertia: AngVector<Real>,
        principal_inertia_local_frame: Rotation<Real>,
    ) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt =
            principal_inertia.map(|e| utils::inv(ComplexField::sqrt(e)));
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }

    /// Initialize a new `MassProperties` from a given center-of-mass, mass, and angular inertia matrix.
    ///
    /// The angular inertia matrix will be diagonalized in order to extract the principal inertia
    /// values and principal inertia frame.
    #[cfg(feature = "dim3")]
    pub fn with_inertia_matrix(local_com: Point<Real>, mass: Real, inertia: Matrix3<Real>) -> Self {
        let mut eigen = inertia.symmetric_eigen();

        if eigen.eigenvectors.determinant() < 0.0 {
            eigen.eigenvectors.swap_columns(1, 2);
            eigen.eigenvalues.swap_rows(1, 2);
        }
        let mut principal_inertia_local_frame = Rotation::from_rotation_matrix(
            &na::Rotation3::from_matrix_unchecked(eigen.eigenvectors),
        );
        let _ = principal_inertia_local_frame.renormalize();

        // Drop negative eigenvalues.
        let principal_inertia = eigen.eigenvalues.map(|e| e.max(0.0));

        Self::with_principal_inertia_frame(
            local_com,
            mass,
            principal_inertia,
            principal_inertia_local_frame,
        )
    }

    /// The mass.
    pub fn mass(&self) -> Real {
        utils::inv(self.inv_mass)
    }

    /// The angular inertia along the principal inertia axes and center of mass of the rigid-body.
    pub fn principal_inertia(&self) -> AngVector<Real> {
        #[cfg(feature = "dim2")]
        return utils::inv(self.inv_principal_inertia_sqrt * self.inv_principal_inertia_sqrt);
        #[cfg(feature = "dim3")]
        return self.inv_principal_inertia_sqrt.map(|e| utils::inv(e * e));
    }

    /// The world-space center of mass of the rigid-body.
    pub fn world_com(&self, pos: &Isometry<Real>) -> Point<Real> {
        pos * self.local_com
    }

    #[cfg(feature = "dim2")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, _rot: &Rotation<Real>) -> AngularInertia<Real> {
        self.inv_principal_inertia_sqrt
    }

    #[cfg(feature = "dim3")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, rot: &Rotation<Real>) -> AngularInertia<Real> {
        if !self.inv_principal_inertia_sqrt.is_zero() {
            let mut lhs = (rot * self.principal_inertia_local_frame)
                .to_rotation_matrix()
                .into_inner();
            let rhs = lhs.transpose();
            lhs.column_mut(0)
                .mul_assign(self.inv_principal_inertia_sqrt.x);
            lhs.column_mut(1)
                .mul_assign(self.inv_principal_inertia_sqrt.y);
            lhs.column_mut(2)
                .mul_assign(self.inv_principal_inertia_sqrt.z);
            let inertia = lhs * rhs;
            AngularInertia::from_sdp_matrix(inertia)
        } else {
            AngularInertia::zero()
        }
    }

    #[cfg(feature = "dim3")]
    /// Reconstructs the inverse angular inertia tensor of the rigid body from its principal inertia values and axes.
    pub fn reconstruct_inverse_inertia_matrix(&self) -> Matrix3<Real> {
        let inv_principal_inertia = self.inv_principal_inertia_sqrt.map(|e| e * e);
        self.principal_inertia_local_frame.to_rotation_matrix()
            * Matrix3::from_diagonal(&inv_principal_inertia)
            * self
                .principal_inertia_local_frame
                .inverse()
                .to_rotation_matrix()
    }

    #[cfg(feature = "dim3")]
    /// Reconstructs the angular inertia tensor of the rigid body from its principal inertia values and axes.
    pub fn reconstruct_inertia_matrix(&self) -> Matrix3<Real> {
        let principal_inertia = self.inv_principal_inertia_sqrt.map(|e| utils::inv(e * e));
        self.principal_inertia_local_frame.to_rotation_matrix()
            * Matrix3::from_diagonal(&principal_inertia)
            * self
                .principal_inertia_local_frame
                .inverse()
                .to_rotation_matrix()
    }

    #[cfg(feature = "dim2")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<Real>) -> Real {
        let i = utils::inv(self.inv_principal_inertia_sqrt * self.inv_principal_inertia_sqrt);

        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            i + shift.norm_squared() * mass
        } else {
            i
        }
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<Real>) -> Matrix3<Real> {
        let matrix = self.reconstruct_inertia_matrix();

        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            let diag = shift.norm_squared();
            let diagm = Matrix3::from_diagonal_element(diag);
            matrix + (diagm + shift * shift.transpose()) * mass
        } else {
            matrix
        }
    }

    /// Transform each element of the mass properties.
    pub fn transform_by(&self, m: &Isometry<Real>) -> Self {
        // NOTE: we don't apply the parallel axis theorem here
        // because the center of mass is also transformed.
        Self {
            local_com: m * self.local_com,
            inv_mass: self.inv_mass,
            inv_principal_inertia_sqrt: self.inv_principal_inertia_sqrt,
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: m.rotation * self.principal_inertia_local_frame,
        }
    }

    /// Changes the mass on these mass-properties.
    ///
    /// The `adjust_angular_inertia` argument should always be `true`, unless
    /// there are some specific reasons not to do so. Setting this to `true`
    /// will automatically adjust the angular inertia of `self` to account
    /// for the mass change (i.e. it will multiply the angular inertia by
    /// `new_mass / prev_mass`). Setting it to `false` will not change the
    /// current angular inertia.
    pub fn set_mass(&mut self, new_mass: Real, adjust_angular_inertia: bool) {
        let new_inv_mass = utils::inv(new_mass);

        if adjust_angular_inertia {
            let curr_mass = utils::inv(self.inv_mass);
            self.inv_principal_inertia_sqrt *= new_inv_mass.sqrt() * curr_mass.sqrt();
        }

        self.inv_mass = new_inv_mass;
    }
}

impl Zero for MassProperties {
    fn zero() -> Self {
        Self {
            inv_mass: 0.0,
            inv_principal_inertia_sqrt: na::zero(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
            local_com: Point::origin(),
        }
    }

    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

impl Sub<MassProperties> for MassProperties {
    type Output = Self;

    #[cfg(feature = "dim2")]
    fn sub(self, other: MassProperties) -> Self {
        if self.is_zero() || other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);

        let mut new_mass = m1 - m2;

        if new_mass < EPSILON {
            // Account for small numerical errors.
            new_mass = 0.0;
        }

        let inv_mass = utils::inv(new_mass);

        let local_com = (self.local_com * m1 - other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let mut inertia = i1 - i2;

        if inertia < EPSILON {
            // Account for small numerical errors.
            inertia = 0.0;
        }

        // NOTE: we drop the negative eigenvalues that may result from subtraction rounding errors.
        let inv_principal_inertia_sqrt = utils::inv(ComplexField::sqrt(inertia));

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    fn sub(self, other: MassProperties) -> Self {
        if self.is_zero() || other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let mut new_mass = m1 - m2;

        if new_mass < EPSILON {
            new_mass = 0.0;
        }

        let inv_mass = utils::inv(new_mass);
        let local_com = (self.local_com * m1 - other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 - i2;
        Self::with_inertia_matrix(local_com, new_mass, inertia)
    }
}

impl SubAssign<MassProperties> for MassProperties {
    fn sub_assign(&mut self, rhs: MassProperties) {
        *self = *self - rhs
    }
}

impl Add<MassProperties> for MassProperties {
    type Output = Self;

    #[cfg(feature = "dim2")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;
        let inv_principal_inertia_sqrt = utils::inv(ComplexField::sqrt(inertia));

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;

        Self::with_inertia_matrix(local_com, m1 + m2, inertia)
    }
}

impl AddAssign<MassProperties> for MassProperties {
    fn add_assign(&mut self, rhs: MassProperties) {
        *self = *self + rhs
    }
}

#[cfg(feature = "std")]
impl std::iter::Sum<MassProperties> for MassProperties {
    #[cfg(feature = "dim2")]
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        let mut total_mass = 0.0;
        let mut total_com = Point::origin();
        let mut total_inertia = 0.0;
        // TODO: avoid this allocation.
        // This is needed because we iterate twice.
        let mut all_props = Vec::new();

        for props in iter {
            let mass = utils::inv(props.inv_mass);
            total_mass += mass;
            total_com += props.local_com.coords * mass;
            all_props.push(props);
        }

        if total_mass > 0.0 {
            total_com /= total_mass;
        }

        for props in all_props {
            total_inertia += props.construct_shifted_inertia_matrix(total_com - props.local_com);
        }

        Self {
            local_com: total_com,
            inv_mass: utils::inv(total_mass),
            inv_principal_inertia_sqrt: utils::inv(ComplexField::sqrt(total_inertia)),
        }
    }

    #[cfg(feature = "dim3")]
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        let mut total_mass = 0.0;
        let mut total_com = Point::origin();
        let mut total_inertia = Matrix3::zeros();
        // TODO: avoid this allocation.
        // This is needed because we iterate twice.
        let mut all_props = Vec::new();

        for props in iter {
            let mass = utils::inv(props.inv_mass);
            total_mass += mass;
            total_com += props.local_com.coords * mass;
            all_props.push(props);
        }

        if total_mass > 0.0 {
            total_com /= total_mass;
        }

        for props in all_props {
            total_inertia += props.construct_shifted_inertia_matrix(total_com - props.local_com);
        }

        Self::with_inertia_matrix(total_com, total_mass, total_inertia)
    }
}

impl approx::AbsDiffEq for MassProperties {
    type Epsilon = Real;
    fn default_epsilon() -> Self::Epsilon {
        Real::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        #[cfg(feature = "dim2")]
        let inertia_is_ok = self
            .inv_principal_inertia_sqrt
            .abs_diff_eq(&other.inv_principal_inertia_sqrt, epsilon);

        #[cfg(feature = "dim3")]
        let inertia_is_ok = self
            .reconstruct_inverse_inertia_matrix()
            .abs_diff_eq(&other.reconstruct_inverse_inertia_matrix(), epsilon);

        inertia_is_ok
            && self.local_com.abs_diff_eq(&other.local_com, epsilon)
            && self.inv_mass.abs_diff_eq(&other.inv_mass, epsilon)
            && self
                .inv_principal_inertia_sqrt
                .abs_diff_eq(&other.inv_principal_inertia_sqrt, epsilon)
    }
}

impl approx::RelativeEq for MassProperties {
    fn default_max_relative() -> Self::Epsilon {
        Real::default_max_relative()
    }

    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        #[cfg(feature = "dim2")]
        let inertia_is_ok = self.inv_principal_inertia_sqrt.relative_eq(
            &other.inv_principal_inertia_sqrt,
            epsilon,
            max_relative,
        );

        #[cfg(feature = "dim3")]
        let inertia_is_ok = self.reconstruct_inverse_inertia_matrix().relative_eq(
            &other.reconstruct_inverse_inertia_matrix(),
            epsilon,
            max_relative,
        );

        inertia_is_ok
            && self
                .local_com
                .relative_eq(&other.local_com, epsilon, max_relative)
            && self
                .inv_mass
                .relative_eq(&other.inv_mass, epsilon, max_relative)
    }
}

#[cfg(test)]
mod test {
    use super::MassProperties;
    use crate::math::{AngVector, Point};
    #[cfg(feature = "dim3")]
    use crate::math::{Rotation, Vector};
    use crate::shape::{Ball, Capsule, Shape};
    use approx::assert_relative_eq;
    use num::Zero;

    #[test]
    fn mass_properties_add_partial_zero() {
        let m1 = MassProperties {
            local_com: Point::origin(),
            inv_mass: 2.0,
            inv_principal_inertia_sqrt: na::zero(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };
        let m2 = MassProperties {
            local_com: Point::origin(),
            inv_mass: 0.0,
            #[cfg(feature = "dim2")]
            inv_principal_inertia_sqrt: 1.0,
            #[cfg(feature = "dim3")]
            inv_principal_inertia_sqrt: Vector::new(1.0, 2.0, 3.0),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };
        let result = MassProperties {
            local_com: Point::origin(),
            inv_mass: 2.0,
            #[cfg(feature = "dim2")]
            inv_principal_inertia_sqrt: 1.0,
            #[cfg(feature = "dim3")]
            inv_principal_inertia_sqrt: Vector::new(1.0, 2.0, 3.0),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };

        assert_eq!(m1 + m2, result);
        assert_eq!(m2 + m1, result);
    }

    #[test]
    fn mass_properties_add_sub() {
        // Check that addition and subtraction of mass properties behave as expected.
        let c1 = Capsule::new_x(1.0, 2.0);
        let c2 = Capsule::new_y(3.0, 4.0);
        let c3 = Ball::new(2.0);

        let m1 = c1.mass_properties(1.0);
        let m2 = c2.mass_properties(1.0);
        let m3 = c3.mass_properties(1.0);
        let m1m2m3 = m1 + m2 + m3;

        assert_relative_eq!(m1 + m2, m2 + m1, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1, m2 + m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m2, m1 + m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m3, m1 + m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m1 + m2), m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m1 + m3), m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m2 + m3), m1, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1 - m2, m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1 - m3, m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m2 - m3, m1, epsilon = 1.0e-6);

        // NOTE: converting the inverse inertia matrices don’t work well here because
        //       tiny inertia value originating from the subtraction can result in a non-zero
        //       (but large) inverse.
        assert_relative_eq!(
            (((m1m2m3 - m1) - m2) - m3).principal_inertia(),
            AngVector::zero(),
            epsilon = 1.0e-6
        );
        assert_relative_eq!((((m1m2m3 - m1) - m2) - m3).mass(), 0.0, epsilon = 1.0e-6);
    }

    #[test]
    fn mass_properties_sum_no_nan() {
        let mp: MassProperties = [MassProperties::zero()].iter().map(|v| *v).sum();
        assert!(!mp.local_com.x.is_nan() && !mp.local_com.y.is_nan());
        #[cfg(feature = "dim3")]
        assert!(!mp.local_com.z.is_nan());
    }
}