1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use crate::mass_properties::MassProperties;
use crate::math::{Matrix, Point, Real, DIM};
use crate::shape::Tetrahedron;
use num::Zero;

impl MassProperties {
    /// Computes the mass properties of a triangle mesh.
    pub fn from_trimesh(
        density: Real,
        vertices: &[Point<Real>],
        indices: &[[u32; DIM]],
    ) -> MassProperties {
        let (volume, com) = trimesh_signed_volume_and_center_of_mass(vertices, indices);

        if volume.is_zero() {
            return MassProperties::zero();
        }

        let mut itot = Matrix::zeros();

        for t in indices {
            let p2 = &vertices[t[0] as usize];
            let p3 = &vertices[t[1] as usize];
            let p4 = &vertices[t[2] as usize];

            let vol = Tetrahedron::new(com, *p2, *p3, *p4).signed_volume();
            let ipart = tetrahedron_unit_inertia_tensor_wrt_point(&com, &com, p2, p3, p4);

            itot += ipart * vol;
        }

        let sign = volume.signum();
        Self::with_inertia_matrix(com, volume * density * sign, itot * density * sign)
    }
}

/// Computes the unit inertia tensor of a tetrahedron, with regard to the given `point`.
pub fn tetrahedron_unit_inertia_tensor_wrt_point(
    point: &Point<Real>,
    p1: &Point<Real>,
    p2: &Point<Real>,
    p3: &Point<Real>,
    p4: &Point<Real>,
) -> Matrix<Real> {
    let p1 = p1 - point;
    let p2 = p2 - point;
    let p3 = p3 - point;
    let p4 = p4 - point;

    // Just for readability.
    let x1 = p1[0];
    let y1 = p1[1];
    let z1 = p1[2];
    let x2 = p2[0];
    let y2 = p2[1];
    let z2 = p2[2];
    let x3 = p3[0];
    let y3 = p3[1];
    let z3 = p3[2];
    let x4 = p4[0];
    let y4 = p4[1];
    let z4 = p4[2];

    let diag_x = x1 * x1
        + x1 * x2
        + x2 * x2
        + x1 * x3
        + x2 * x3
        + x3 * x3
        + x1 * x4
        + x2 * x4
        + x3 * x4
        + x4 * x4;
    let diag_y = y1 * y1
        + y1 * y2
        + y2 * y2
        + y1 * y3
        + y2 * y3
        + y3 * y3
        + y1 * y4
        + y2 * y4
        + y3 * y4
        + y4 * y4;
    let diag_z = z1 * z1
        + z1 * z2
        + z2 * z2
        + z1 * z3
        + z2 * z3
        + z3 * z3
        + z1 * z4
        + z2 * z4
        + z3 * z4
        + z4 * z4;

    let a0 = (diag_y + diag_z) * 0.1;
    let b0 = (diag_z + diag_x) * 0.1;
    let c0 = (diag_x + diag_y) * 0.1;

    let a1 = (y1 * z1 * 2.0
        + y2 * z1
        + y3 * z1
        + y4 * z1
        + y1 * z2
        + y2 * z2 * 2.0
        + y3 * z2
        + y4 * z2
        + y1 * z3
        + y2 * z3
        + y3 * z3 * 2.0
        + y4 * z3
        + y1 * z4
        + y2 * z4
        + y3 * z4
        + y4 * z4 * 2.0)
        * 0.05;
    let b1 = (x1 * z1 * 2.0
        + x2 * z1
        + x3 * z1
        + x4 * z1
        + x1 * z2
        + x2 * z2 * 2.0
        + x3 * z2
        + x4 * z2
        + x1 * z3
        + x2 * z3
        + x3 * z3 * 2.0
        + x4 * z3
        + x1 * z4
        + x2 * z4
        + x3 * z4
        + x4 * z4 * 2.0)
        * 0.05;
    let c1 = (x1 * y1 * 2.0
        + x2 * y1
        + x3 * y1
        + x4 * y1
        + x1 * y2
        + x2 * y2 * 2.0
        + x3 * y2
        + x4 * y2
        + x1 * y3
        + x2 * y3
        + x3 * y3 * 2.0
        + x4 * y3
        + x1 * y4
        + x2 * y4
        + x3 * y4
        + x4 * y4 * 2.0)
        * 0.05;

    Matrix::new(a0, -b1, -c1, -b1, b0, -a1, -c1, -a1, c0)
}

/// Computes the volume and center-of-mass of a mesh.
pub fn trimesh_signed_volume_and_center_of_mass(
    vertices: &[Point<Real>],
    indices: &[[u32; DIM]],
) -> (Real, Point<Real>) {
    let geometric_center = crate::utils::center(vertices);

    let mut res = Point::origin();
    let mut vol = 0.0;

    for t in indices {
        let p2 = vertices[t[0] as usize];
        let p3 = vertices[t[1] as usize];
        let p4 = vertices[t[2] as usize];

        let volume = Tetrahedron::new(geometric_center, p2, p3, p4).signed_volume();
        let center = Tetrahedron::new(geometric_center, p2, p3, p4).center();

        res += center.coords * volume;
        vol += volume;
    }

    if vol.is_zero() {
        (vol, geometric_center)
    } else {
        (vol, res / vol)
    }
}

#[cfg(test)]
mod test {
    use crate::math::Vector;
    use crate::{
        mass_properties::MassProperties,
        shape::{Ball, Capsule, Cone, Cuboid, Cylinder, Shape},
    };

    fn assert_same_principal_inertias(mprops1: &MassProperties, mprops2: &MassProperties) {
        for k in 0..3 {
            let i1 = mprops1.principal_inertia_local_frame
                * mprops1.principal_inertia().component_mul(
                    &(mprops1.principal_inertia_local_frame.inverse() * Vector::ith(k, 1.0)),
                );
            let i2 = mprops2.principal_inertia_local_frame
                * mprops2.principal_inertia().component_mul(
                    &(mprops2.principal_inertia_local_frame.inverse() * Vector::ith(k, 1.0)),
                );
            assert_relative_eq!(i1, i2, epsilon = 0.5)
        }
    }

    #[test]
    fn cuboid_as_trimesh_mprops() {
        let cuboid = Cuboid::new(Vector::new(1.0, 2.0, 3.0));

        use crate::shape::Shape;
        let orig_mprops = cuboid.mass_properties(1.0);
        dbg!(orig_mprops.principal_inertia());

        let mut trimesh = cuboid.to_trimesh();
        let mprops = MassProperties::from_trimesh(1.0, &trimesh.0, &trimesh.1);
        assert_relative_eq!(mprops.mass(), 48.0, epsilon = 1.0e-4);
        assert_relative_eq!(
            (mprops.principal_inertia_local_frame * mprops.principal_inertia()).abs(),
            Vector::new(208.0, 160.0, 80.0),
            epsilon = 1.0e-4
        );

        // Check after shifting the trimesh off the origin.
        trimesh
            .0
            .iter_mut()
            .for_each(|pt| *pt += Vector::new(30.0, 20.0, 10.0));
        let mprops = MassProperties::from_trimesh(1.0, &trimesh.0, &trimesh.1);
        assert_relative_eq!(mprops.mass(), 48.0, epsilon = 1.0e-4);
        assert_relative_eq!(
            (mprops.principal_inertia_local_frame * mprops.principal_inertia()).abs(),
            Vector::new(208.0, 160.0, 80.0),
            epsilon = 1.0e-4
        );
    }

    #[test]
    fn primitives_as_trimesh_mprops() {
        let primitives = (
            Cuboid::new(Vector::new(1.0, 2.0, 3.0)),
            Capsule::new_y(2.0, 1.0),
            Cone::new(2.0, 1.0),
            Cylinder::new(2.0, 1.0),
            Ball::new(2.0),
        );
        let mut meshes = [
            primitives.0.to_trimesh(),
            primitives.1.to_trimesh(100, 100),
            primitives.2.to_trimesh(100),
            primitives.3.to_trimesh(100),
            primitives.4.to_trimesh(100, 100),
        ];
        let shapes = [
            &primitives.0 as &dyn Shape,
            &primitives.1 as &dyn Shape,
            &primitives.2 as &dyn Shape,
            &primitives.3 as &dyn Shape,
            &primitives.4 as &dyn Shape,
        ];

        for (shape, mesh) in shapes.iter().zip(meshes.iter_mut()) {
            let shape_mprops = shape.mass_properties(2.0);
            let mesh_mprops = MassProperties::from_trimesh(2.0, &mesh.0, &mesh.1);
            assert_relative_eq!(shape_mprops.mass(), mesh_mprops.mass(), epsilon = 1.0e-1);
            assert_same_principal_inertias(&shape_mprops, &mesh_mprops);
            assert_relative_eq!(
                shape_mprops.local_com,
                mesh_mprops.local_com,
                epsilon = 1.0e-3
            );

            // Now try with a shifted mesh.
            let shift = Vector::new(33.0, 22.0, 11.0);
            mesh.0.iter_mut().for_each(|pt| *pt += shift);

            let mesh_mprops = MassProperties::from_trimesh(2.0, &mesh.0, &mesh.1);

            assert_relative_eq!(shape_mprops.mass(), mesh_mprops.mass(), epsilon = 1.0e-1);
            assert_same_principal_inertias(&shape_mprops, &mesh_mprops);
            assert_relative_eq!(
                shape_mprops.local_com + shift, // The mesh is shifted, so its center-of-mass is shifted too.
                mesh_mprops.local_com,
                epsilon = 1.0e-3
            );
        }
    }
}