parry3d/partitioning/qbvh/
build.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
use crate::bounding_volume::{Aabb, SimdAabb};
use crate::math::Vector;
use crate::math::{Point, Real};
use crate::query::SplitResult;
use crate::simd::SimdReal;
use simba::simd::SimdValue;

use super::utils::split_indices_wrt_dim;
use super::{IndexedData, NodeIndex, Qbvh, QbvhNode, QbvhNodeFlags, QbvhProxy};

pub struct BuilderProxies<'a, LeafData> {
    proxies: &'a mut Vec<QbvhProxy<LeafData>>,
    aabbs: &'a mut Vec<Aabb>,
}

impl<'a, LeafData> BuilderProxies<'a, LeafData> {
    fn insert(&mut self, data: LeafData, aabb: Aabb)
    where
        LeafData: IndexedData,
    {
        let index = data.index();

        if self.proxies.len() <= index {
            self.proxies.resize(index + 1, QbvhProxy::invalid());
            self.aabbs.resize(index + 1, Aabb::new_invalid());
        }

        self.proxies[index] = QbvhProxy::detached(data);
        self.aabbs[index] = aabb;
    }
}

pub trait QbvhDataSplitter<LeafData> {
    fn split_dataset<'idx>(
        &mut self,
        subdiv_dims: [usize; 2],
        center: Point<Real>,
        indices: &'idx mut [usize],
        indices_workspace: &'idx mut Vec<usize>,
        proxies: BuilderProxies<LeafData>,
    ) -> [&'idx mut [usize]; 4];
}

/// A data splitter that arranges a set of Aabbs in two sets based on their center’s coordinate
/// along the split axis.
pub struct CenterDataSplitter {
    /// If all the Aabb centers have the same coordinate values along the splitting axis
    /// setting this to `true` will allow the splitter to split the Aabb set into two
    /// subsets arbitrarily.
    pub enable_fallback_split: bool,
}

impl Default for CenterDataSplitter {
    fn default() -> Self {
        Self {
            enable_fallback_split: true,
        }
    }
}

impl<LeafData> QbvhDataSplitter<LeafData> for CenterDataSplitter {
    fn split_dataset<'idx>(
        &mut self,
        subdiv_dims: [usize; 2],
        center: Point<Real>,
        indices: &'idx mut [usize],
        _: &'idx mut Vec<usize>,
        proxies: BuilderProxies<LeafData>,
    ) -> [&'idx mut [usize]; 4] {
        self.split_dataset_wo_workspace(subdiv_dims, center, indices, &*proxies.aabbs)
    }
}

impl CenterDataSplitter {
    pub(crate) fn split_dataset_wo_workspace<'idx>(
        &self,
        subdiv_dims: [usize; 2],
        center: Point<Real>,
        indices: &'idx mut [usize],
        aabbs: &[Aabb],
    ) -> [&'idx mut [usize]; 4] {
        // TODO: should we split wrt. the median instead of the average?
        // TODO: we should ensure each subslice contains at least 4 elements each (or less if
        // indices has less than 16 elements in the first place).
        let (left, right) = split_indices_wrt_dim(
            indices,
            aabbs,
            &center,
            subdiv_dims[0],
            self.enable_fallback_split,
        );

        let (left_bottom, left_top) = split_indices_wrt_dim(
            left,
            aabbs,
            &center,
            subdiv_dims[1],
            self.enable_fallback_split,
        );
        let (right_bottom, right_top) = split_indices_wrt_dim(
            right,
            aabbs,
            &center,
            subdiv_dims[1],
            self.enable_fallback_split,
        );
        [left_bottom, left_top, right_bottom, right_top]
    }
}

/// Data splitter for Qbvh construction that generates non-overlapping Aabbs at each
/// level of the tree.
///
/// This splitter assumes that no pairs of the input set of Aabb overlap (though they
/// can intersect slightly at their boundaries with an error of `epsilon`). Given this set,
/// the Qbvh constructed using this splitter will be such that no pair of intermediate nodes
/// with the same depth have overlapping Aabbs.
pub struct QbvhNonOverlappingDataSplitter<F> {
    /// The leaf data-splitting function.
    pub canonical_split: F,
    /// Allowed overlap between two leaf Aabbs.
    pub epsilon: Real,
}

impl<LeafData, F> QbvhDataSplitter<LeafData> for QbvhNonOverlappingDataSplitter<F>
where
    LeafData: IndexedData,
    F: FnMut(LeafData, usize, Real, Real, Aabb, Aabb) -> SplitResult<(LeafData, Aabb)>,
{
    fn split_dataset<'idx>(
        &mut self,
        subdiv_dims: [usize; 2],
        center: Point<Real>,
        indices: &'idx mut [usize],
        indices_workspace: &'idx mut Vec<usize>,
        mut proxies: BuilderProxies<LeafData>,
    ) -> [&'idx mut [usize]; 4] {
        // 1. Snap the splitting point to one of the Aabb min/max,
        // such that at least one Aabb isn’t split along each dimension.
        let mut split_pt = Point::from(Vector::repeat(-Real::MAX));
        let mut split_pt_right = Point::from(Vector::repeat(Real::MAX));

        for dim in subdiv_dims {
            for i in indices.iter().copied() {
                let aabb = &proxies.aabbs[i];

                if aabb.maxs[dim] <= center[dim] && aabb.maxs[dim] > split_pt[dim] {
                    split_pt[dim] = aabb.maxs[dim];
                }

                if aabb.mins[dim] >= center[dim] && aabb.mins[dim] < split_pt_right[dim] {
                    split_pt_right[dim] = aabb.mins[dim];
                }
            }

            if (split_pt[dim] - center[dim]).abs() > (split_pt_right[dim] - center[dim]).abs() {
                split_pt[dim] = split_pt_right[dim];
            }

            if split_pt[dim] == -Real::MAX || split_pt[dim] == Real::MAX {
                // Try to at least find a splitting point that is aligned with any
                // Aabb side.
                let candidate_min = proxies.aabbs[indices[0]].mins[dim];
                let candidate_max = proxies.aabbs[indices[0]].maxs[dim];
                for i in indices.iter().copied() {
                    let aabb = &proxies.aabbs[i];
                    if aabb.mins[dim] < candidate_min {
                        split_pt[dim] = candidate_min;
                        break;
                    } else if aabb.mins[dim] > candidate_min {
                        split_pt[dim] = aabb.mins[dim];
                    }

                    if aabb.maxs[dim] > candidate_max {
                        split_pt[dim] = candidate_max;
                        break;
                    } else if aabb.maxs[dim] < candidate_max {
                        split_pt[dim] = aabb.maxs[dim];
                    }
                }
            }
        }

        // If we really can’t find any splitting point along both dimensions, meaning that all the
        // aabb ranges along this dimension are equal, then split at the center.
        if (split_pt[subdiv_dims[0]] == -Real::MAX || split_pt[subdiv_dims[0]] == Real::MAX)
            && (split_pt[subdiv_dims[1]] == -Real::MAX || split_pt[subdiv_dims[1]] == Real::MAX)
        {
            split_pt = center;
        }

        // 2: Actually split the geometry.
        indices_workspace.resize(indices.len(), 0);
        indices_workspace.copy_from_slice(indices);

        for dim in subdiv_dims {
            for k in 0..indices_workspace.len() {
                let i = indices_workspace[k];
                if let SplitResult::Pair(aabb_l, aabb_r) =
                    proxies.aabbs[i].canonical_split(dim, split_pt[dim], self.epsilon)
                {
                    // The Aabb was split, so we need to split the geometry too.
                    if let SplitResult::Pair((data_l, aabb_l), (data_r, aabb_r)) = (self
                        .canonical_split)(
                        proxies.proxies[i].data,
                        dim,
                        split_pt[dim],
                        self.epsilon,
                        aabb_l,
                        aabb_r,
                    ) {
                        indices_workspace[k] = data_l.index();
                        indices_workspace.push(data_r.index());
                        proxies.insert(data_l, aabb_l);
                        proxies.insert(data_r, aabb_r);
                    }
                }
            }
        }

        // 3: Partition the indices.
        let center_splitter = CenterDataSplitter {
            enable_fallback_split: false,
        };

        center_splitter.split_dataset_wo_workspace(
            subdiv_dims,
            split_pt,
            indices_workspace,
            &*proxies.aabbs,
        )
    }
}

/// Trait used for generating the content of the leaves of the Qbvh acceleration structure.
pub trait QbvhDataGenerator<LeafData> {
    /// Gives an idea of the number of elements this generator contains.
    ///
    /// This is primarily used for pre-allocating some arrays for better performances.
    fn size_hint(&self) -> usize;
    /// Iterate through all the elements of this generator.
    fn for_each(&mut self, f: impl FnMut(LeafData, Aabb));
}

impl<LeafData, F> QbvhDataGenerator<LeafData> for F
where
    F: ExactSizeIterator<Item = (LeafData, Aabb)>,
{
    fn size_hint(&self) -> usize {
        self.len()
    }

    #[inline(always)]
    fn for_each(&mut self, mut f: impl FnMut(LeafData, Aabb)) {
        for (elt, aabb) in self {
            f(elt, aabb)
        }
    }
}

impl<LeafData: IndexedData> Qbvh<LeafData> {
    /// Clears this quaternary BVH and rebuilds it from a new set of data and Aabbs.
    pub fn clear_and_rebuild(
        &mut self,
        data_gen: impl QbvhDataGenerator<LeafData>,
        dilation_factor: Real,
    ) {
        self.clear_and_rebuild_with_splitter(
            data_gen,
            CenterDataSplitter::default(),
            dilation_factor,
        );
    }
}

impl<LeafData: IndexedData> Qbvh<LeafData> {
    /// Clears this quaternary BVH and rebuilds it from a new set of data and Aabbs.
    pub fn clear_and_rebuild_with_splitter(
        &mut self,
        mut data_gen: impl QbvhDataGenerator<LeafData>,
        mut splitter: impl QbvhDataSplitter<LeafData>,
        dilation_factor: Real,
    ) {
        self.free_list.clear();
        self.nodes.clear();
        self.proxies.clear();

        // Create proxies.
        let mut indices = Vec::with_capacity(data_gen.size_hint());
        let mut aabbs = vec![Aabb::new_invalid(); data_gen.size_hint()];
        self.proxies = vec![QbvhProxy::invalid(); data_gen.size_hint()];

        data_gen.for_each(|data, aabb| {
            let index = data.index();
            if index >= self.proxies.len() {
                self.proxies.resize(index + 1, QbvhProxy::invalid());
                aabbs.resize(index + 1, Aabb::new_invalid());
            }

            self.proxies[index].data = data;
            aabbs[index] = aabb;
            indices.push(index);
        });

        // Build the tree recursively.
        let root_node = QbvhNode {
            simd_aabb: SimdAabb::new_invalid(),
            children: [1, u32::MAX, u32::MAX, u32::MAX],
            parent: NodeIndex::invalid(),
            flags: QbvhNodeFlags::default(),
        };

        self.nodes.push(root_node);
        let root_id = NodeIndex::new(0, 0);
        let (_, aabb) = self.do_recurse_build_generic(
            &mut splitter,
            &mut indices,
            &mut aabbs,
            root_id,
            dilation_factor,
        );

        self.root_aabb = aabb;
        self.nodes[0].simd_aabb = SimdAabb::from([
            aabb,
            Aabb::new_invalid(),
            Aabb::new_invalid(),
            Aabb::new_invalid(),
        ]);
    }

    fn do_recurse_build_generic(
        &mut self,
        splitter: &mut impl QbvhDataSplitter<LeafData>,
        indices: &mut [usize],
        aabbs: &mut Vec<Aabb>,
        parent: NodeIndex,
        dilation: Real,
    ) -> (u32, Aabb) {
        if indices.len() <= 4 {
            // Leaf case.
            let my_id = self.nodes.len();
            let mut leaf_aabbs = [Aabb::new_invalid(); 4];
            let mut proxy_ids = [u32::MAX; 4];

            for (k, id) in indices.iter().enumerate() {
                leaf_aabbs[k] = aabbs[*id];
                proxy_ids[k] = *id as u32;
                self.proxies[*id].node = NodeIndex::new(my_id as u32, k as u8);
            }

            let mut node = QbvhNode {
                simd_aabb: SimdAabb::from(leaf_aabbs),
                children: proxy_ids,
                parent,
                flags: QbvhNodeFlags::LEAF,
            };

            node.simd_aabb.dilate_by_factor(SimdReal::splat(dilation));
            let my_aabb = node.simd_aabb.to_merged_aabb();
            self.nodes.push(node);

            return (my_id as u32, my_aabb);
        }

        // Compute the center and variance along each dimension.
        // In 3D we compute the variance to not-subdivide the dimension with lowest variance.
        // Therefore variance computation is not needed in 2D because we only have 2 dimension
        // to split in the first place.
        let mut center = Point::origin();
        #[cfg(feature = "dim3")]
        let mut variance = Vector::zeros();

        let center_denom = 1.0 / (indices.len() as Real);

        for i in &*indices {
            let coords = aabbs[*i].center().coords;
            center += coords * center_denom;
        }

        #[cfg(feature = "dim3")]
        {
            let variance_denom = 1.0 / ((indices.len() - 1) as Real);
            for i in &*indices {
                let dir_to_center = aabbs[*i].center() - center;
                variance += dir_to_center.component_mul(&dir_to_center) * variance_denom;
            }
        }

        // Find the axis with minimum variance. This is the axis along
        // which we are **not** subdividing our set.
        #[allow(unused_mut)] // Does not need to be mutable in 2D.
        let mut subdiv_dims = [0, 1];
        #[cfg(feature = "dim3")]
        {
            let min = variance.imin();
            subdiv_dims[0] = (min + 1) % 3;
            subdiv_dims[1] = (min + 2) % 3;
        }

        let node = QbvhNode {
            simd_aabb: SimdAabb::new_invalid(),
            children: [0; 4], // Will be set after the recursive call
            parent,
            flags: QbvhNodeFlags::default(),
        };

        let id = self.nodes.len() as u32;
        self.nodes.push(node);

        // Split the set along the two subdiv_dims dimensions.
        let proxies = BuilderProxies {
            proxies: &mut self.proxies,
            aabbs,
        };

        // Recurse!
        let mut workspace = vec![]; // TODO: avoid repeated allocations?
        let splits = splitter.split_dataset(subdiv_dims, center, indices, &mut workspace, proxies);
        let n = [
            NodeIndex::new(id, 0),
            NodeIndex::new(id, 1),
            NodeIndex::new(id, 2),
            NodeIndex::new(id, 3),
        ];

        let children = [
            self.do_recurse_build_generic(splitter, splits[0], aabbs, n[0], dilation),
            self.do_recurse_build_generic(splitter, splits[1], aabbs, n[1], dilation),
            self.do_recurse_build_generic(splitter, splits[2], aabbs, n[2], dilation),
            self.do_recurse_build_generic(splitter, splits[3], aabbs, n[3], dilation),
        ];

        // Now we know the indices of the child nodes.
        self.nodes[id as usize].children =
            [children[0].0, children[1].0, children[2].0, children[3].0];
        self.nodes[id as usize].simd_aabb =
            SimdAabb::from([children[0].1, children[1].1, children[2].1, children[3].1]);
        self.nodes[id as usize]
            .simd_aabb
            .dilate_by_factor(SimdReal::splat(dilation));

        let my_aabb = self.nodes[id as usize].simd_aabb.to_merged_aabb();
        (id, my_aabb)
    }
}