parry3d/partitioning/qbvh/traversal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
#![allow(clippy::needless_range_loop)] // This tends to make the traversal code much more verbose that necessary.
use crate::bounding_volume::{Aabb, SimdAabb};
use crate::math::Real;
use crate::partitioning::visitor::{SimdSimultaneousVisitStatus, SimdVisitorWithContext};
use crate::partitioning::{
Qbvh, SimdBestFirstVisitStatus, SimdBestFirstVisitor, SimdSimultaneousVisitor, SimdVisitStatus,
SimdVisitor,
};
use crate::simd::SIMD_WIDTH;
use crate::utils::WeightedValue;
use num::Bounded;
use simba::simd::SimdBool;
use std::collections::BinaryHeap;
#[cfg(feature = "parallel")]
use {
crate::partitioning::{ParallelSimdSimultaneousVisitor, ParallelSimdVisitor},
arrayvec::ArrayVec,
rayon::prelude::*,
std::sync::atomic::{AtomicBool, Ordering as AtomicOrdering},
};
use super::{IndexedData, NodeIndex};
impl<LeafData: IndexedData> Qbvh<LeafData> {
/// Performs a depth-first traversal on the BVH.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first(&self, visitor: &mut impl SimdVisitor<LeafData, SimdAabb>) -> bool {
self.traverse_depth_first_node(visitor, 0)
}
/// Performs a depth-first traversal on the BVH, starting at the given node.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first_node(
&self,
visitor: &mut impl SimdVisitor<LeafData, SimdAabb>,
start_node: u32,
) -> bool {
self.traverse_depth_first_node_with_stack(visitor, &mut Vec::new(), start_node)
}
/// Performs a depth-first traversal on the BVH.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first_with_stack(
&self,
visitor: &mut impl SimdVisitor<LeafData, SimdAabb>,
stack: &mut Vec<u32>,
) -> bool {
self.traverse_depth_first_node_with_stack(visitor, stack, 0)
}
/// Performs a depth-first traversal on the BVH.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first_node_with_stack(
&self,
visitor: &mut impl SimdVisitor<LeafData, SimdAabb>,
stack: &mut Vec<u32>,
start_node: u32,
) -> bool {
stack.clear();
if !self.nodes.is_empty() {
stack.push(start_node);
}
while let Some(entry) = stack.pop() {
let node = &self.nodes[entry as usize];
let leaf_data = if node.is_leaf() {
Some(
array![|ii| Some(&self.proxies.get(node.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
match visitor.visit(&node.simd_aabb, leaf_data) {
SimdVisitStatus::ExitEarly => {
return false;
}
SimdVisitStatus::MaybeContinue(mask) => {
let bitmask = mask.bitmask();
for ii in 0..SIMD_WIDTH {
if (bitmask & (1 << ii)) != 0 && !node.is_leaf() {
// Internal node, visit the child.
// Un fortunately, we have this check because invalid Aabbs
// return a hit as well.
if node.children[ii] as usize <= self.nodes.len() {
stack.push(node.children[ii]);
}
}
}
}
}
}
true
}
/// Performs a depth-first traversal on the BVH. Passes a context from the
/// parent to the children.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first_with_context<Context: Clone>(
&self,
visitor: &mut impl SimdVisitorWithContext<LeafData, SimdAabb, Context>,
context: Context,
) -> bool {
self.traverse_depth_first_node_with_stack_and_context(visitor, &mut Vec::new(), 0, context)
}
/// Performs a depth-first traversal on the BVH and propagates a context down,
/// from the root to each of its descendants. The context can be modified
/// during the query.
///
/// # Return
///
/// Returns `false` if the traversal exited early, and `true` otherwise.
pub fn traverse_depth_first_node_with_stack_and_context<Context: Clone>(
&self,
visitor: &mut impl SimdVisitorWithContext<LeafData, SimdAabb, Context>,
stack: &mut Vec<(u32, Context)>,
start_node: u32,
context: Context,
) -> bool {
stack.clear();
if !self.nodes.is_empty() {
stack.push((start_node, context));
}
while let Some((entry, context)) = stack.pop() {
let node = &self.nodes[entry as usize];
let leaf_data = if node.is_leaf() {
Some(
array![|ii| Some(&self.proxies.get(node.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
let (visit_result, contexts) = visitor.visit(&node.simd_aabb, leaf_data, context);
match visit_result {
SimdVisitStatus::ExitEarly => {
return false;
}
SimdVisitStatus::MaybeContinue(mask) => {
let bitmask = mask.bitmask();
for ii in 0..SIMD_WIDTH {
if (bitmask & (1 << ii)) != 0 && !node.is_leaf() {
// Internal node, visit the child.
// Un fortunately, we have this check because invalid Aabbs
// return a hit as well.
if node.children[ii] as usize <= self.nodes.len() {
stack.push((node.children[ii], contexts[ii].clone()));
}
}
}
}
}
}
true
}
/// Performs a best-first-search on the BVH.
///
/// Returns the content of the leaf with the smallest associated cost, and a result of
/// user-defined type.
pub fn traverse_best_first<BFS>(&self, visitor: &mut BFS) -> Option<(NodeIndex, BFS::Result)>
where
BFS: SimdBestFirstVisitor<LeafData, SimdAabb>,
BFS::Result: Clone, // Because we cannot move out of an array…
{
self.traverse_best_first_node(visitor, 0, Real::max_value())
}
/// Performs a best-first-search on the BVH, starting at the given node.
///
/// Returns the content of the leaf with the smallest associated cost, and a result of
/// user-defined type.
pub fn traverse_best_first_node<BFS>(
&self,
visitor: &mut BFS,
start_node: u32,
init_cost: Real,
) -> Option<(NodeIndex, BFS::Result)>
where
BFS: SimdBestFirstVisitor<LeafData, SimdAabb>,
BFS::Result: Clone, // Because we cannot move out of an array…
{
if self.nodes.is_empty() {
return None;
}
let mut queue: BinaryHeap<WeightedValue<u32>> = BinaryHeap::new();
let mut best_cost = init_cost;
let mut best_result = None;
queue.push(WeightedValue::new(start_node, -best_cost / 2.0));
while let Some(entry) = queue.pop() {
if -entry.cost >= best_cost {
// No BV left in the tree that has a lower cost than best_result
break; // Solution found.
}
let node = &self.nodes[entry.value as usize];
let leaf_data = if node.is_leaf() {
Some(
array![|ii| Some(&self.proxies.get(node.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
match visitor.visit(best_cost, &node.simd_aabb, leaf_data) {
SimdBestFirstVisitStatus::ExitEarly(result) => {
return result.map(|r| (node.parent, r)).or(best_result);
}
SimdBestFirstVisitStatus::MaybeContinue {
weights,
mask,
results,
} => {
let bitmask = mask.bitmask();
let weights: [Real; SIMD_WIDTH] = weights.into();
for ii in 0..SIMD_WIDTH {
if (bitmask & (1 << ii)) != 0 {
if node.is_leaf() {
if weights[ii] < best_cost && results[ii].is_some() {
// We found a leaf!
if let Some(proxy) =
self.proxies.get(node.children[ii] as usize)
{
best_cost = weights[ii];
best_result =
Some((proxy.node, results[ii].clone().unwrap()))
}
}
} else {
// Internal node, visit the child.
// Un fortunately, we have this check because invalid Aabbs
// return a hit as well.
if (node.children[ii] as usize) < self.nodes.len() {
queue.push(WeightedValue::new(node.children[ii], -weights[ii]));
}
}
}
}
}
}
}
best_result
}
/// Retrieve all the data of the nodes with Aabbs intersecting
/// the given Aabb:
// TODO: implement a visitor pattern to merge intersect_aabb
// and intersect_ray into a single method.
pub fn intersect_aabb(&self, aabb: &Aabb, out: &mut Vec<LeafData>) {
if self.nodes.is_empty() {
return;
}
// Special case for the root.
let mut stack = vec![0u32];
let simd_aabb = SimdAabb::splat(*aabb);
while let Some(inode) = stack.pop() {
let node = &self.nodes[inode as usize];
let intersections = node.simd_aabb.intersects(&simd_aabb);
let bitmask = intersections.bitmask();
for ii in 0..SIMD_WIDTH {
if (bitmask & (1 << ii)) != 0 {
if node.is_leaf() {
// We found a leaf!
// Unfortunately, invalid Aabbs return a intersection as well.
if let Some(proxy) = self.proxies.get(node.children[ii] as usize) {
out.push(proxy.data);
}
} else {
// Internal node, visit the child.
// Unfortunately, we have this check because invalid Aabbs
// return a intersection as well.
if node.children[ii] as usize <= self.nodes.len() {
stack.push(node.children[ii]);
}
}
}
}
}
}
/// Performs a simultaneous traversal of two Qbvh.
pub fn traverse_bvtt<LeafData2: IndexedData>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &mut impl SimdSimultaneousVisitor<LeafData, LeafData2, SimdAabb>,
) {
self.traverse_bvtt_with_stack(qbvh2, visitor, &mut Vec::new())
}
/// Performs a simultaneous traversal of two Qbvh.
pub fn traverse_bvtt_with_stack<LeafData2: IndexedData>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &mut impl SimdSimultaneousVisitor<LeafData, LeafData2, SimdAabb>,
stack: &mut Vec<(u32, u32)>,
) {
let qbvh1 = self;
stack.clear();
if !qbvh1.nodes.is_empty() && !qbvh2.nodes.is_empty() {
stack.push((0, 0));
}
while let Some(entry) = stack.pop() {
let node1 = &qbvh1.nodes[entry.0 as usize];
let node2 = &qbvh2.nodes[entry.1 as usize];
let leaf_data1 = if node1.is_leaf() {
Some(
array![|ii| Some(&qbvh1.proxies.get(node1.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
let leaf_data2 = if node2.is_leaf() {
Some(
array![|ii| Some(&qbvh2.proxies.get(node2.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
match visitor.visit(&node1.simd_aabb, leaf_data1, &node2.simd_aabb, leaf_data2) {
SimdSimultaneousVisitStatus::ExitEarly => {
return;
}
SimdSimultaneousVisitStatus::MaybeContinue(mask) => {
match (node1.is_leaf(), node2.is_leaf()) {
(true, true) => { /* Can’t go deeper. */ }
(true, false) => {
let mut bitmask = 0;
for ii in 0..SIMD_WIDTH {
bitmask |= mask[ii].bitmask();
}
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0
&& node2.children[jj] as usize <= qbvh2.nodes.len()
{
stack.push((entry.0, node2.children[jj]));
}
}
}
(false, true) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
if bitmask != 0 && node1.children[ii] as usize <= qbvh1.nodes.len()
{
stack.push((node1.children[ii], entry.1));
}
}
}
(false, false) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0
&& node1.children[ii] as usize <= qbvh1.nodes.len()
&& node2.children[jj] as usize <= qbvh2.nodes.len()
{
stack.push((node1.children[ii], node2.children[jj]));
}
}
}
}
}
}
}
}
}
/// Performs a simultaneous traversal of two Qbvh.
pub fn traverse_modified_bvtt<LeafData2: IndexedData>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &mut impl SimdSimultaneousVisitor<LeafData, LeafData2, SimdAabb>,
) {
self.traverse_modified_bvtt_with_stack(qbvh2, visitor, &mut Vec::new())
}
/// Performs a simultaneous traversal of two Qbvh.
pub fn traverse_modified_bvtt_with_stack<LeafData2: IndexedData>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &mut impl SimdSimultaneousVisitor<LeafData, LeafData2, SimdAabb>,
stack: &mut Vec<(u32, u32)>,
) {
let qbvh1 = self;
stack.clear();
if !qbvh1.nodes.is_empty() && !qbvh2.nodes.is_empty() && qbvh1.nodes[0].is_changed() {
stack.push((0, 0));
}
while let Some(entry) = stack.pop() {
let node1 = &qbvh1.nodes[entry.0 as usize];
let node2 = &qbvh2.nodes[entry.1 as usize];
if !node1.is_changed() {
continue;
}
let leaf_data1 = if node1.is_leaf() {
Some(
array![|ii| Some(&qbvh1.proxies.get(node1.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
let leaf_data2 = if node2.is_leaf() {
Some(
array![|ii| Some(&qbvh2.proxies.get(node2.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
match visitor.visit(&node1.simd_aabb, leaf_data1, &node2.simd_aabb, leaf_data2) {
SimdSimultaneousVisitStatus::ExitEarly => {
return;
}
SimdSimultaneousVisitStatus::MaybeContinue(mask) => {
match (node1.is_leaf(), node2.is_leaf()) {
(true, true) => { /* Can’t go deeper. */ }
(true, false) => {
let mut bitmask = 0;
for ii in 0..SIMD_WIDTH {
bitmask |= mask[ii].bitmask();
}
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0
&& node2.children[jj] as usize <= qbvh2.nodes.len()
{
stack.push((entry.0, node2.children[jj]));
}
}
}
(false, true) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
if bitmask != 0 && node1.children[ii] as usize <= qbvh1.nodes.len()
{
stack.push((node1.children[ii], entry.1));
}
}
}
(false, false) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0
&& node1.children[ii] as usize <= qbvh1.nodes.len()
&& node2.children[jj] as usize <= qbvh2.nodes.len()
{
stack.push((node1.children[ii], node2.children[jj]));
}
}
}
}
}
}
}
}
}
}
#[cfg(feature = "parallel")]
impl<LeafData: IndexedData + Sync> Qbvh<LeafData> {
/// Performs a depth-first traversal of two Qbvh using
/// parallelism internally for better performances with large tree.
pub fn traverse_depth_first_parallel(&self, visitor: &impl ParallelSimdVisitor<LeafData>) {
if !self.nodes.is_empty() {
let exit_early = AtomicBool::new(false);
self.traverse_depth_first_node_parallel(visitor, &exit_early, 0);
}
}
/// Runs a parallel depth-first traversal of the sub-tree starting at the given node.
pub fn traverse_depth_first_node_parallel(
&self,
visitor: &impl ParallelSimdVisitor<LeafData>,
exit_early: &AtomicBool,
entry: u32,
) {
if exit_early.load(AtomicOrdering::Relaxed) {
return;
}
let mut stack: ArrayVec<u32, SIMD_WIDTH> = ArrayVec::new();
let node = &self.nodes[entry as usize];
let leaf_data = if node.is_leaf() {
Some(array![|ii| Some(&self.proxies.get(node.children[ii] as usize)?.data); SIMD_WIDTH])
} else {
None
};
match visitor.visit(entry, node, leaf_data) {
SimdVisitStatus::ExitEarly => {
exit_early.store(true, AtomicOrdering::Relaxed);
return;
}
SimdVisitStatus::MaybeContinue(mask) => {
let bitmask = mask.bitmask();
for ii in 0..SIMD_WIDTH {
if (bitmask & (1 << ii)) != 0 {
if !node.is_leaf() {
// Internal node, visit the child.
// Un fortunately, we have this check because invalid Aabbs
// return a hit as well.
if node.children[ii] as usize <= self.nodes.len() {
stack.push(node.children[ii]);
}
}
}
}
}
}
stack
.as_slice()
.par_iter()
.copied()
.for_each(|entry| self.traverse_depth_first_node_parallel(visitor, exit_early, entry));
}
/// Performs a simultaneous traversal of two Qbvh using
/// parallelism internally for better performances with large tree.
pub fn traverse_bvtt_parallel<
LeafData2: IndexedData + Sync,
Visitor: ParallelSimdSimultaneousVisitor<LeafData, LeafData2>,
>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &Visitor,
) {
if !self.nodes.is_empty() && !qbvh2.nodes.is_empty() {
let exit_early = AtomicBool::new(false);
self.traverse_bvtt_node_parallel(
qbvh2,
visitor,
&exit_early,
Visitor::Data::default(),
(0, 0),
);
}
}
/// Runs a parallel simultaneous traversal of the sub-tree starting at the given nodes.
pub fn traverse_bvtt_node_parallel<
LeafData2: IndexedData + Sync,
Visitor: ParallelSimdSimultaneousVisitor<LeafData, LeafData2>,
>(
&self,
qbvh2: &Qbvh<LeafData2>,
visitor: &Visitor,
exit_early: &AtomicBool,
data: Visitor::Data,
entry: (u32, u32),
) {
if exit_early.load(AtomicOrdering::Relaxed) {
return;
}
let qbvh1 = self;
let node1 = &qbvh1.nodes[entry.0 as usize];
let node2 = &qbvh2.nodes[entry.1 as usize];
const SQUARE_SIMD_WIDTH: usize = SIMD_WIDTH * SIMD_WIDTH;
let mut stack: ArrayVec<(u32, u32), SQUARE_SIMD_WIDTH> = ArrayVec::new();
let leaf_data1 = if node1.is_leaf() {
Some(
array![|ii| Some(&qbvh1.proxies.get(node1.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
let leaf_data2 = if node2.is_leaf() {
Some(
array![|ii| Some(&qbvh2.proxies.get(node2.children[ii] as usize)?.data); SIMD_WIDTH],
)
} else {
None
};
let (status, data) = visitor.visit(
entry.0, &node1, leaf_data1, entry.1, &node2, leaf_data2, data,
);
match status {
SimdSimultaneousVisitStatus::ExitEarly => {
exit_early.store(true, AtomicOrdering::Relaxed);
return;
}
SimdSimultaneousVisitStatus::MaybeContinue(mask) => {
match (node1.is_leaf(), node2.is_leaf()) {
(true, true) => { /* Can’t go deeper. */ }
(true, false) => {
let mut bitmask = 0;
for ii in 0..SIMD_WIDTH {
bitmask |= mask[ii].bitmask();
}
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0 {
if node2.children[jj] as usize <= qbvh2.nodes.len() {
stack.push((entry.0, node2.children[jj]));
}
}
}
}
(false, true) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
if bitmask != 0 {
if node1.children[ii] as usize <= qbvh1.nodes.len() {
stack.push((node1.children[ii], entry.1));
}
}
}
}
(false, false) => {
for ii in 0..SIMD_WIDTH {
let bitmask = mask[ii].bitmask();
for jj in 0..SIMD_WIDTH {
if (bitmask & (1 << jj)) != 0 {
if node1.children[ii] as usize <= qbvh1.nodes.len()
&& node2.children[jj] as usize <= qbvh2.nodes.len()
{
stack.push((node1.children[ii], node2.children[jj]));
}
}
}
}
}
}
}
}
stack.as_slice().par_iter().copied().for_each(|entry| {
self.traverse_bvtt_node_parallel(qbvh2, visitor, exit_early, data, entry)
});
}
}