1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
use crate::bounding_volume::SimdAabb;
use crate::math::{Isometry, Real, SimdBool, SimdReal, Vector, SIMD_WIDTH};
use crate::partitioning::{SimdBestFirstVisitStatus, SimdBestFirstVisitor};
use crate::query::{ClosestPoints, QueryDispatcher};
use crate::shape::{Shape, TypedSimdCompositeShape};
use crate::utils::IsometryOpt;
use na;
use simba::simd::{SimdBool as _, SimdPartialOrd, SimdValue};

/// Closest points between a composite shape and any other shape.
pub fn closest_points_composite_shape_shape<D, G1>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    g1: &G1,
    g2: &dyn Shape,
    margin: Real,
) -> ClosestPoints
where
    D: ?Sized + QueryDispatcher,
    G1: ?Sized + TypedSimdCompositeShape,
{
    let mut visitor =
        CompositeShapeAgainstShapeClosestPointsVisitor::new(dispatcher, pos12, g1, g2, margin);

    g1.typed_qbvh()
        .traverse_best_first(&mut visitor)
        .expect("The composite shape must not be empty.")
        .1
         .1
}

/// Closest points between a shape and a composite shape.
pub fn closest_points_shape_composite_shape<D, G2>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    g1: &dyn Shape,
    g2: &G2,
    margin: Real,
) -> ClosestPoints
where
    D: ?Sized + QueryDispatcher,
    G2: ?Sized + TypedSimdCompositeShape,
{
    closest_points_composite_shape_shape(dispatcher, &pos12.inverse(), g2, g1, margin).flipped()
}

/// A visitor for computing the closest points between a composite-shape and a shape.
pub struct CompositeShapeAgainstShapeClosestPointsVisitor<'a, D: ?Sized, G1: ?Sized + 'a> {
    msum_shift: Vector<SimdReal>,
    msum_margin: Vector<SimdReal>,
    margin: Real,

    dispatcher: &'a D,
    pos12: &'a Isometry<Real>,
    g1: &'a G1,
    g2: &'a dyn Shape,
}

impl<'a, D, G1> CompositeShapeAgainstShapeClosestPointsVisitor<'a, D, G1>
where
    D: ?Sized + QueryDispatcher,
    G1: ?Sized + TypedSimdCompositeShape,
{
    /// Initializes a visitor for computing the closest points between a composite-shape and a shape.
    pub fn new(
        dispatcher: &'a D,
        pos12: &'a Isometry<Real>,
        g1: &'a G1,
        g2: &'a dyn Shape,
        margin: Real,
    ) -> CompositeShapeAgainstShapeClosestPointsVisitor<'a, D, G1> {
        let ls_aabb2 = g2.compute_aabb(pos12);

        CompositeShapeAgainstShapeClosestPointsVisitor {
            msum_shift: Vector::splat(-ls_aabb2.center().coords),
            msum_margin: Vector::splat(ls_aabb2.half_extents()),
            margin,
            dispatcher,
            pos12,
            g1,
            g2,
        }
    }
}

impl<'a, D, G1> SimdBestFirstVisitor<G1::PartId, SimdAabb>
    for CompositeShapeAgainstShapeClosestPointsVisitor<'a, D, G1>
where
    D: ?Sized + QueryDispatcher,
    G1: ?Sized + TypedSimdCompositeShape,
{
    type Result = (G1::PartId, ClosestPoints);

    fn visit(
        &mut self,
        best: Real,
        bv: &SimdAabb,
        data: Option<[Option<&G1::PartId>; SIMD_WIDTH]>,
    ) -> SimdBestFirstVisitStatus<Self::Result> {
        // Compute the minkowski sum of the two Aabbs.
        let msum = SimdAabb {
            mins: bv.mins + self.msum_shift + (-self.msum_margin),
            maxs: bv.maxs + self.msum_shift + self.msum_margin,
        };
        let dist = msum.distance_to_origin();
        let mask = dist.simd_lt(SimdReal::splat(best));

        if let Some(data) = data {
            let bitmask = mask.bitmask();
            let mut weights = [0.0; SIMD_WIDTH];
            let mut mask = [false; SIMD_WIDTH];
            let mut results = [None; SIMD_WIDTH];
            let mut found_intersection = false;

            for ii in 0..SIMD_WIDTH {
                if (bitmask & (1 << ii)) != 0 && data[ii].is_some() {
                    let part_id = *data[ii].unwrap();
                    self.g1.map_untyped_part_at(part_id, |part_pos1, g1, _| {
                        let pts = self.dispatcher.closest_points(
                            &part_pos1.inv_mul(self.pos12),
                            g1,
                            self.g2,
                            self.margin,
                        );
                        match pts {
                            Ok(ClosestPoints::WithinMargin(ref p1, ref p2)) => {
                                let p1 = part_pos1.transform_point(p1);
                                let p2_1 = self.pos12 * p2;
                                weights[ii] = na::distance(&p1, &p2_1);
                                results[ii] = Some((part_id, ClosestPoints::WithinMargin(p1, *p2)));
                                mask[ii] = true;
                            }
                            Ok(ClosestPoints::Intersecting) => {
                                found_intersection = true;
                            }
                            Err(_) | Ok(ClosestPoints::Disjoint) => {}
                        };
                    });

                    if found_intersection {
                        return SimdBestFirstVisitStatus::ExitEarly(Some((
                            part_id,
                            ClosestPoints::Intersecting,
                        )));
                    }
                }
            }

            SimdBestFirstVisitStatus::MaybeContinue {
                weights: SimdReal::from(weights),
                mask: SimdBool::from(mask),
                results,
            }
        } else {
            SimdBestFirstVisitStatus::MaybeContinue {
                weights: dist,
                mask,
                results: [None; SIMD_WIDTH],
            }
        }
    }
}