parry3d/query/contact_manifolds/
contact_manifolds_composite_shape_composite_shape.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::bounding_volume::BoundingVolume;
use crate::math::{Isometry, Real};
use crate::query::contact_manifolds::contact_manifolds_workspace::{
    TypedWorkspaceData, WorkspaceData,
};
use crate::query::contact_manifolds::ContactManifoldsWorkspace;
use crate::query::query_dispatcher::PersistentQueryDispatcher;
use crate::query::visitors::BoundingVolumeIntersectionsVisitor;
use crate::query::ContactManifold;
use crate::shape::SimdCompositeShape;
use crate::utils::hashmap::{Entry, HashMap};
use crate::utils::IsometryOpt;

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(Clone)]
struct SubDetector {
    manifold_id: usize,
    timestamp: bool,
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Default)]
pub struct CompositeShapeCompositeShapeContactManifoldsWorkspace {
    timestamp: bool,
    sub_detectors: HashMap<(u32, u32), SubDetector>,
}

impl CompositeShapeCompositeShapeContactManifoldsWorkspace {
    pub fn new() -> Self {
        Self::default()
    }
}

fn ensure_workspace_exists(workspace: &mut Option<ContactManifoldsWorkspace>) {
    if workspace
        .as_ref()
        .and_then(|w| {
            w.0.downcast_ref::<CompositeShapeCompositeShapeContactManifoldsWorkspace>()
        })
        .is_some()
    {
        return;
    }

    *workspace = Some(ContactManifoldsWorkspace(Box::new(
        CompositeShapeCompositeShapeContactManifoldsWorkspace::new(),
    )));
}

/// Computes the contact manifolds between two composite shapes.
pub fn contact_manifolds_composite_shape_composite_shape<'a, ManifoldData, ContactData>(
    dispatcher: &dyn PersistentQueryDispatcher<ManifoldData, ContactData>,
    pos12: &Isometry<Real>,
    mut composite1: &'a dyn SimdCompositeShape,
    mut composite2: &'a dyn SimdCompositeShape,
    prediction: Real,
    manifolds: &mut Vec<ContactManifold<ManifoldData, ContactData>>,
    workspace: &mut Option<ContactManifoldsWorkspace>,
) where
    ManifoldData: Default + Clone,
    ContactData: Default + Copy,
{
    ensure_workspace_exists(workspace);
    let workspace: &mut CompositeShapeCompositeShapeContactManifoldsWorkspace =
        workspace.as_mut().unwrap().0.downcast_mut().unwrap();
    let new_timestamp = !workspace.timestamp;
    workspace.timestamp = new_timestamp;

    /*
     * Compute interferences.
     */

    let mut qbvh1 = composite1.qbvh();
    let mut qbvh2 = composite2.qbvh();

    let mut pos12 = *pos12;
    let mut pos21 = pos12.inverse();
    let mut stack2 = Vec::new();

    let mut ls_aabb1 = qbvh1.root_aabb();
    let mut ls_aabb2 = qbvh2.root_aabb();
    let flipped = ls_aabb1.half_extents().norm_squared() < ls_aabb2.half_extents().norm_squared();

    if flipped {
        std::mem::swap(&mut composite1, &mut composite2);
        std::mem::swap(&mut qbvh1, &mut qbvh2);
        std::mem::swap(&mut pos12, &mut pos21);
        std::mem::swap(&mut ls_aabb1, &mut ls_aabb2);
    }

    // Traverse qbvh1 first.
    let ls_aabb2_1 = ls_aabb2.transform_by(&pos12).loosened(prediction);
    let mut old_manifolds = std::mem::take(manifolds);

    let mut leaf_fn1 = |leaf1: &u32| {
        composite1.map_part_at(
            *leaf1,
            &mut |part_pos1, part_shape1, normal_constraints1| {
                let pos211 = part_pos1.prepend_to(&pos21); // == pos21 * part_pos1
                let ls_part_aabb1_2 = part_shape1.compute_aabb(&pos211).loosened(prediction);
                let mut leaf_fn2 = |leaf2: &u32| {
                    composite2.map_part_at(
                        *leaf2,
                        &mut |part_pos2, part_shape2, normal_constraints2| {
                            let pos2211 = part_pos2.inv_mul(&pos211);
                            let entry_key = if flipped {
                                (*leaf2, *leaf1)
                            } else {
                                (*leaf1, *leaf2)
                            };

                            let sub_detector = match workspace.sub_detectors.entry(entry_key) {
                                Entry::Occupied(entry) => {
                                    let sub_detector = entry.into_mut();
                                    let manifold = old_manifolds[sub_detector.manifold_id].take();
                                    sub_detector.manifold_id = manifolds.len();
                                    sub_detector.timestamp = new_timestamp;
                                    manifolds.push(manifold);
                                    sub_detector
                                }
                                Entry::Vacant(entry) => {
                                    let sub_detector = SubDetector {
                                        manifold_id: manifolds.len(),
                                        timestamp: new_timestamp,
                                    };

                                    let mut manifold = ContactManifold::new();

                                    if flipped {
                                        manifold.subshape1 = *leaf2;
                                        manifold.subshape2 = *leaf1;
                                        manifold.subshape_pos1 = part_pos2.copied();
                                        manifold.subshape_pos2 = part_pos1.copied();
                                    } else {
                                        manifold.subshape1 = *leaf1;
                                        manifold.subshape2 = *leaf2;
                                        manifold.subshape_pos1 = part_pos1.copied();
                                        manifold.subshape_pos2 = part_pos2.copied();
                                    };

                                    manifolds.push(manifold);
                                    entry.insert(sub_detector)
                                }
                            };

                            let manifold = &mut manifolds[sub_detector.manifold_id];

                            if flipped {
                                let _ = dispatcher.contact_manifold_convex_convex(
                                    &pos2211,
                                    part_shape2,
                                    part_shape1,
                                    normal_constraints2,
                                    normal_constraints1,
                                    prediction,
                                    manifold,
                                );
                            } else {
                                let _ = dispatcher.contact_manifold_convex_convex(
                                    &pos2211.inverse(),
                                    part_shape1,
                                    part_shape2,
                                    normal_constraints1,
                                    normal_constraints2,
                                    prediction,
                                    manifold,
                                );
                            }
                        },
                    );

                    true
                };

                let mut visitor2 =
                    BoundingVolumeIntersectionsVisitor::new(&ls_part_aabb1_2, &mut leaf_fn2);

                let _ = qbvh2.traverse_depth_first_with_stack(&mut visitor2, &mut stack2);
            },
        );

        true
    };

    let mut visitor1 = BoundingVolumeIntersectionsVisitor::new(&ls_aabb2_1, &mut leaf_fn1);
    let _ = qbvh1.traverse_depth_first(&mut visitor1);

    workspace
        .sub_detectors
        .retain(|_, detector| detector.timestamp == new_timestamp)
}

impl WorkspaceData for CompositeShapeCompositeShapeContactManifoldsWorkspace {
    fn as_typed_workspace_data(&self) -> TypedWorkspaceData {
        TypedWorkspaceData::CompositeShapeCompositeShapeContactManifoldsWorkspace(self)
    }

    fn clone_dyn(&self) -> Box<dyn WorkspaceData> {
        Box::new(self.clone())
    }
}