parry3d/query/contact_manifolds/
contact_manifolds_heightfield_composite_shape.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
use crate::bounding_volume::BoundingVolume;
use crate::math::{Isometry, Real};
use crate::query::contact_manifolds::contact_manifolds_workspace::{
    TypedWorkspaceData, WorkspaceData,
};
use crate::query::contact_manifolds::{ContactManifoldsWorkspace, NormalConstraints};
use crate::query::query_dispatcher::PersistentQueryDispatcher;
use crate::query::visitors::BoundingVolumeIntersectionsVisitor;
use crate::query::ContactManifold;
#[cfg(feature = "dim2")]
use crate::shape::Capsule;
use crate::shape::{HeightField, Shape, SimdCompositeShape};
use crate::utils::hashmap::{Entry, HashMap};
use crate::utils::IsometryOpt;

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(Clone)]
struct SubDetector {
    manifold_id: usize,
    timestamp: bool,
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Default)]
pub struct HeightFieldCompositeShapeContactManifoldsWorkspace {
    timestamp: bool,
    sub_detectors: HashMap<(u32, u32), SubDetector>,
}

impl HeightFieldCompositeShapeContactManifoldsWorkspace {
    pub fn new() -> Self {
        Self::default()
    }
}

fn ensure_workspace_exists(workspace: &mut Option<ContactManifoldsWorkspace>) {
    if workspace
        .as_ref()
        .and_then(|w| {
            w.0.downcast_ref::<HeightFieldCompositeShapeContactManifoldsWorkspace>()
        })
        .is_some()
    {
        return;
    }

    *workspace = Some(ContactManifoldsWorkspace(Box::new(
        HeightFieldCompositeShapeContactManifoldsWorkspace::new(),
    )));
}

/// Computes the contact manifold between an heightfield and a composite shape.
pub fn contact_manifolds_heightfield_composite_shape<ManifoldData, ContactData>(
    dispatcher: &dyn PersistentQueryDispatcher<ManifoldData, ContactData>,
    pos12: &Isometry<Real>,
    pos21: &Isometry<Real>,
    heightfield1: &HeightField,
    composite2: &dyn SimdCompositeShape,
    prediction: Real,
    manifolds: &mut Vec<ContactManifold<ManifoldData, ContactData>>,
    workspace: &mut Option<ContactManifoldsWorkspace>,
    flipped: bool,
) where
    ManifoldData: Default + Clone,
    ContactData: Default + Copy,
{
    ensure_workspace_exists(workspace);
    let workspace: &mut HeightFieldCompositeShapeContactManifoldsWorkspace =
        workspace.as_mut().unwrap().0.downcast_mut().unwrap();
    let new_timestamp = !workspace.timestamp;
    workspace.timestamp = new_timestamp;

    /*
     * Compute interferences.
     */
    let qbvh2 = composite2.qbvh();
    let mut stack2 = Vec::new();
    let ls_aabb2_1 = qbvh2.root_aabb().transform_by(pos12).loosened(prediction);
    let mut old_manifolds = std::mem::take(manifolds);

    heightfield1.map_elements_in_local_aabb(&ls_aabb2_1, &mut |leaf1, part1| {
        #[cfg(feature = "dim2")]
        let sub_shape1 = Capsule::new(part1.a, part1.b, 0.0); // TODO: use a segment instead.
        #[cfg(feature = "dim3")]
        let sub_shape1 = *part1;

        let ls_aabb1_2 = part1.compute_aabb(pos21).loosened(prediction);
        let mut leaf_fn2 = |leaf2: &u32| {
            composite2.map_part_at(
                *leaf2,
                &mut |part_pos2, part_shape2, normal_constraints2| {
                    let sub_detector = match workspace.sub_detectors.entry((leaf1, *leaf2)) {
                        Entry::Occupied(entry) => {
                            let sub_detector = entry.into_mut();
                            let manifold = old_manifolds[sub_detector.manifold_id].take();
                            sub_detector.manifold_id = manifolds.len();
                            sub_detector.timestamp = new_timestamp;
                            manifolds.push(manifold);
                            sub_detector
                        }
                        Entry::Vacant(entry) => {
                            let sub_detector = SubDetector {
                                manifold_id: manifolds.len(),
                                timestamp: new_timestamp,
                            };

                            let mut manifold = ContactManifold::new();

                            if flipped {
                                manifold.subshape1 = *leaf2;
                                manifold.subshape2 = leaf1;
                                manifold.subshape_pos1 = part_pos2.copied();
                            } else {
                                manifold.subshape1 = leaf1;
                                manifold.subshape2 = *leaf2;
                                manifold.subshape_pos2 = part_pos2.copied();
                            };

                            manifolds.push(manifold);
                            entry.insert(sub_detector)
                        }
                    };

                    let manifold = &mut manifolds[sub_detector.manifold_id];

                    #[cfg(feature = "dim2")]
                    let triangle_normals = None::<()>;
                    #[cfg(feature = "dim3")]
                    let triangle_normals = heightfield1.triangle_normal_constraints(leaf1);
                    let normal_constraints1 = triangle_normals
                        .as_ref()
                        .map(|proj| proj as &dyn NormalConstraints);

                    if flipped {
                        let _ = dispatcher.contact_manifold_convex_convex(
                            &part_pos2.inv_mul(pos21),
                            part_shape2,
                            &sub_shape1,
                            normal_constraints2,
                            normal_constraints1,
                            prediction,
                            manifold,
                        );
                    } else {
                        let _ = dispatcher.contact_manifold_convex_convex(
                            &part_pos2.prepend_to(pos12),
                            &sub_shape1,
                            part_shape2,
                            normal_constraints1,
                            normal_constraints2,
                            prediction,
                            manifold,
                        );
                    }
                },
            );

            true
        };

        let mut visitor2 = BoundingVolumeIntersectionsVisitor::new(&ls_aabb1_2, &mut leaf_fn2);
        let _ = qbvh2.traverse_depth_first_with_stack(&mut visitor2, &mut stack2);
    });

    workspace
        .sub_detectors
        .retain(|_, detector| detector.timestamp == new_timestamp);
}

impl WorkspaceData for HeightFieldCompositeShapeContactManifoldsWorkspace {
    fn as_typed_workspace_data(&self) -> TypedWorkspaceData {
        TypedWorkspaceData::HeightfieldCompositeShapeContactManifoldsWorkspace(self)
    }

    fn clone_dyn(&self) -> Box<dyn WorkspaceData> {
        Box::new(self.clone())
    }
}