1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
use crate::math::{Point, Real};
use crate::query::gjk::{self, CSOPoint};
use crate::query::{PointQuery, PointQueryWithLocation};
use crate::shape::{
Segment, SegmentPointLocation, Tetrahedron, TetrahedronPointLocation, Triangle,
TrianglePointLocation,
};
#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()
/// A simplex of dimension up to 3 that uses Voronoï regions for computing point projections.
#[derive(Clone, Debug)]
pub struct VoronoiSimplex {
prev_vertices: [usize; 4],
prev_proj: [Real; 3],
prev_dim: usize,
vertices: [CSOPoint; 4],
proj: [Real; 3],
dim: usize,
}
impl Default for VoronoiSimplex {
fn default() -> Self {
Self::new()
}
}
impl VoronoiSimplex {
/// Creates a new empty simplex.
pub fn new() -> VoronoiSimplex {
VoronoiSimplex {
prev_vertices: [0, 1, 2, 3],
prev_proj: [0.0; 3],
prev_dim: 0,
vertices: [CSOPoint::origin(); 4],
proj: [0.0; 3],
dim: 0,
}
}
/// Swap two vertices of this simplex.
pub fn swap(&mut self, i1: usize, i2: usize) {
self.vertices.swap(i1, i2);
self.prev_vertices.swap(i1, i2);
}
/// Resets this simplex to a single point.
pub fn reset(&mut self, pt: CSOPoint) {
self.dim = 0;
self.prev_dim = 0;
self.vertices[0] = pt;
}
/// Add a point to this simplex.
pub fn add_point(&mut self, pt: CSOPoint) -> bool {
self.prev_dim = self.dim;
self.prev_proj = self.proj;
self.prev_vertices = [0, 1, 2, 3];
match self.dim {
0 => {
if (self.vertices[0] - pt).norm_squared() < gjk::eps_tol() {
return false;
}
}
1 => {
let ab = self.vertices[1] - self.vertices[0];
let ac = pt - self.vertices[0];
if ab.cross(&ac).norm_squared() < gjk::eps_tol() {
return false;
}
}
2 => {
let ab = self.vertices[1] - self.vertices[0];
let ac = self.vertices[2] - self.vertices[0];
let ap = pt - self.vertices[0];
let n = ab.cross(&ac).normalize();
if n.dot(&ap).abs() < gjk::eps_tol() {
return false;
}
}
_ => unreachable!(),
}
self.dim += 1;
self.vertices[self.dim] = pt;
true
}
/// Retrieves the barycentric coordinate associated to the `i`-th by the last call to `project_origin_and_reduce`.
pub fn proj_coord(&self, i: usize) -> Real {
assert!(i <= self.dim, "Index out of bounds.");
self.proj[i]
}
/// The i-th point of this simplex.
pub fn point(&self, i: usize) -> &CSOPoint {
assert!(i <= self.dim, "Index out of bounds.");
&self.vertices[i]
}
/// Retrieves the barycentric coordinate associated to the `i`-th before the last call to `project_origin_and_reduce`.
pub fn prev_proj_coord(&self, i: usize) -> Real {
assert!(i <= self.prev_dim, "Index out of bounds.");
self.prev_proj[i]
}
/// The i-th point of the simplex before the last call to `projet_origin_and_reduce`.
pub fn prev_point(&self, i: usize) -> &CSOPoint {
assert!(i <= self.prev_dim, "Index out of bounds.");
&self.vertices[self.prev_vertices[i]]
}
/// Projets the origin on the boundary of this simplex and reduces `self` the smallest subsimplex containing the origin.
///
/// Retruns the result of the projection or Point::origin() if the origin lies inside of the simplex.
/// The state of the samplex before projection is saved, and can be retrieved using the methods prefixed
/// by `prev_`.
pub fn project_origin_and_reduce(&mut self) -> Point<Real> {
if self.dim == 0 {
self.proj[0] = 1.0;
self.vertices[0].point
} else if self.dim == 1 {
// TODO: NLL
let (proj, location) = {
let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
seg.project_local_point_and_get_location(&Point::<Real>::origin(), true)
};
match location {
SegmentPointLocation::OnVertex(0) => {
self.proj[0] = 1.0;
self.dim = 0;
}
SegmentPointLocation::OnVertex(1) => {
self.swap(0, 1);
self.proj[0] = 1.0;
self.dim = 0;
}
SegmentPointLocation::OnEdge(coords) => {
self.proj[0] = coords[0];
self.proj[1] = coords[1];
}
_ => unreachable!(),
}
proj.point
} else if self.dim == 2 {
// TODO: NLL
let (proj, location) = {
let tri = Triangle::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
);
tri.project_local_point_and_get_location(&Point::<Real>::origin(), true)
};
match location {
TrianglePointLocation::OnVertex(i) => {
self.swap(0, i as usize);
self.proj[0] = 1.0;
self.dim = 0;
}
TrianglePointLocation::OnEdge(0, coords) => {
self.proj[0] = coords[0];
self.proj[1] = coords[1];
self.dim = 1;
}
TrianglePointLocation::OnEdge(1, coords) => {
self.swap(0, 2);
self.proj[0] = coords[1];
self.proj[1] = coords[0];
self.dim = 1;
}
TrianglePointLocation::OnEdge(2, coords) => {
self.swap(1, 2);
self.proj[0] = coords[0];
self.proj[1] = coords[1];
self.dim = 1;
}
TrianglePointLocation::OnFace(_, coords) => {
self.proj = coords;
}
_ => {}
}
proj.point
} else {
assert!(self.dim == 3);
// TODO: NLL
let (proj, location) = {
let tetr = Tetrahedron::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
self.vertices[3].point,
);
tetr.project_local_point_and_get_location(&Point::<Real>::origin(), true)
};
match location {
TetrahedronPointLocation::OnVertex(i) => {
self.swap(0, i as usize);
self.proj[0] = 1.0;
self.dim = 0;
}
TetrahedronPointLocation::OnEdge(i, coords) => {
match i {
0 => {
// ab
}
1 => {
// ac
self.swap(1, 2)
}
2 => {
// ad
self.swap(1, 3)
}
3 => {
// bc
self.swap(0, 2)
}
4 => {
// bd
self.swap(0, 3)
}
5 => {
// cd
self.swap(0, 2);
self.swap(1, 3);
}
_ => unreachable!(),
}
match i {
0 | 1 | 2 | 5 => {
self.proj[0] = coords[0];
self.proj[1] = coords[1];
}
3 | 4 => {
self.proj[0] = coords[1];
self.proj[1] = coords[0];
}
_ => unreachable!(),
}
self.dim = 1;
}
TetrahedronPointLocation::OnFace(i, coords) => {
match i {
0 => {
// abc
self.proj = coords;
}
1 => {
// abd
self.vertices[2] = self.vertices[3];
self.proj = coords;
}
2 => {
// acd
self.vertices[1] = self.vertices[3];
self.proj[0] = coords[0];
self.proj[1] = coords[2];
self.proj[2] = coords[1];
}
3 => {
// bcd
self.vertices[0] = self.vertices[3];
self.proj[0] = coords[2];
self.proj[1] = coords[0];
self.proj[2] = coords[1];
}
_ => unreachable!(),
}
self.dim = 2;
}
_ => {}
}
proj.point
}
}
/// Compute the projection of the origin on the boundary of this simplex.
pub fn project_origin(&mut self) -> Point<Real> {
if self.dim == 0 {
self.vertices[0].point
} else if self.dim == 1 {
let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
seg.project_local_point(&Point::<Real>::origin(), true)
.point
} else if self.dim == 2 {
let tri = Triangle::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
);
tri.project_local_point(&Point::<Real>::origin(), true)
.point
} else {
let tetr = Tetrahedron::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
self.vertices[3].point,
);
tetr.project_local_point(&Point::<Real>::origin(), true)
.point
}
}
/// Tests if the given point is already a vertex of this simplex.
pub fn contains_point(&self, pt: &Point<Real>) -> bool {
for i in 0..self.dim + 1 {
if self.vertices[i].point == *pt {
return true;
}
}
false
}
/// The dimension of the smallest subspace that can contain this simplex.
pub fn dimension(&self) -> usize {
self.dim
}
/// The dimension of the simplex before the last call to `project_origin_and_reduce`.
pub fn prev_dimension(&self) -> usize {
self.prev_dim
}
/// The maximum squared length of the vertices of this simplex.
pub fn max_sq_len(&self) -> Real {
let mut max_sq_len = 0.0;
for i in 0..self.dim + 1 {
let norm = self.vertices[i].point.coords.norm_squared();
if norm > max_sq_len {
max_sq_len = norm
}
}
max_sq_len
}
/// Apply a function to all the vertices of this simplex.
pub fn modify_pnts(&mut self, f: &dyn Fn(&mut CSOPoint)) {
for i in 0..self.dim + 1 {
f(&mut self.vertices[i])
}
}
}