parry3d/query/nonlinear_shape_cast/
nonlinear_shape_cast_voxels_shape.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use crate::bounding_volume::BoundingVolume;
use crate::math::{Point, Real, Vector};
use crate::query::{NonlinearRigidMotion, QueryDispatcher, ShapeCastHit};
use crate::shape::{Cuboid, Shape, Voxels};

/// Time Of Impact of a voxels shape with any other shape, under a rigid motion (translation + rotation).
pub fn cast_shapes_nonlinear_voxels_shape<D>(
    dispatcher: &D,
    motion1: &NonlinearRigidMotion,
    g1: &Voxels,
    motion2: &NonlinearRigidMotion,
    g2: &dyn Shape,
    start_time: Real,
    end_time: Real,
    stop_at_penetration: bool,
) -> Option<ShapeCastHit>
where
    D: ?Sized + QueryDispatcher,
{
    use num_traits::Bounded;

    // HACK: really supporting nonlinear shape-casting on a rotating voxels shape would
    //       be extremely inefficient without any sort of hierarchical traversal on the voxel.
    //       So for now we assume that the voxels shape only has a translational motion.
    //       We can fix that once we introduce a sparse representation (and its accompanying
    //       acceleration structure) for the voxels shape.
    let mut motion2 = *motion2;
    let mut motion1 = *motion1;
    motion2.linvel -= motion1.linvel;
    motion1.freeze(start_time);
    let pos1 = motion1.position_at_time(start_time);

    // Search for the smallest time of impact.
    //
    // 1. Check all the cells in the AABB at time `start_time`.
    // 2. Check which wall of unchecked voxels is hit first.
    // 3. Check one additional layer of voxels behind that wall.
    // 4. Continue, with a new AABB taken at the position at the time we hit the
    //    wall.
    // 5. Continue until `curr_t` is bigger than `smallest_t`.
    //
    // PERF: This will be fairly efficient if the shape being cast has a size in the same order
    // of magnitude as the voxels, and if it doesn’t have a significant off-center angular
    // motion. Otherwise, this method will be fairly slow, and would require an acceleration
    // structure to improve.

    let mut hit = None;
    let mut smallest_t = end_time;

    // NOTE: we approximate the AABB of the shape using its orientation at the start and
    //       end time. It might miss some cases if the object is rotating fast.
    let start_pos2_1 = pos1.inv_mul(&motion2.position_at_time(start_time));
    let mut end_pos2_1 = pos1.inv_mul(&motion2.position_at_time(end_time));
    end_pos2_1.translation = start_pos2_1.translation;
    let start_aabb2_1 = g2
        .compute_aabb(&start_pos2_1)
        .merged(&g2.compute_aabb(&end_pos2_1));

    let mut check_voxels_in_range = |search_domain: [Point<i32>; 2]| {
        for vox in g1.voxels_in_range(search_domain[0], search_domain[1]) {
            if !vox.state.is_empty() {
                // PERF: could we check the canonical shape instead, and deduplicate accordingly?
                let center = g1.voxel_center(vox.grid_coords);
                let cuboid = Cuboid::new(g1.voxel_size() / 2.0);
                let vox_motion1 = motion1.prepend_translation(center.coords);
                if let Some(new_hit) = dispatcher
                    .cast_shapes_nonlinear(
                        &vox_motion1,
                        &cuboid,
                        &motion2,
                        g2,
                        start_time,
                        end_time,
                        stop_at_penetration,
                    )
                    .ok()
                    .flatten()
                {
                    if new_hit.time_of_impact < smallest_t {
                        smallest_t = new_hit.time_of_impact;
                        hit = Some(new_hit);
                    }
                }
            }
        }
    };

    let mut search_domain = g1.voxel_range_intersecting_local_aabb(&start_aabb2_1);
    check_voxels_in_range(search_domain);

    // Run the propagation.
    let [domain_mins, domain_maxs] = g1.domain();

    loop {
        let search_domain_aabb = g1.voxel_range_aabb(search_domain[0], search_domain[1]);

        // Figure out if we should move the aabb up/down/right/left.
        #[cfg(feature = "dim2")]
        let ii = [0, 1];
        #[cfg(feature = "dim3")]
        let ii = [0, 1, 2];

        let toi = ii.map(|i| {
            if motion2.linvel[i] > 0.0 {
                let t = (search_domain_aabb.maxs[i] - start_aabb2_1.maxs[i]) / motion2.linvel[i];
                if t < 0.0 {
                    (Real::max_value(), true)
                } else {
                    (t, true)
                }
            } else if motion2.linvel[i] < 0.0 {
                let t = (search_domain_aabb.mins[i] - start_aabb2_1.mins[i]) / motion2.linvel[i];
                if t < 0.0 {
                    (Real::max_value(), false)
                } else {
                    (t, false)
                }
            } else {
                (Real::max_value(), false)
            }
        });

        #[cfg(feature = "dim2")]
        if toi[0].0 > end_time && toi[1].0 > end_time {
            break;
        }

        #[cfg(feature = "dim3")]
        if toi[0].0 > end_time && toi[1].0 > end_time && toi[2].0 > end_time {
            break;
        }

        let imin = Vector::from(toi.map(|t| t.0)).imin();

        if toi[imin].1 {
            search_domain[0][imin] += 1;
            search_domain[1][imin] += 1;

            if search_domain[1][imin] <= domain_maxs[imin] {
                // Check the voxels on the added row.
                let mut prev_row = search_domain[0];
                prev_row[imin] = search_domain[1][imin] - 1;

                let range_to_check = [prev_row, search_domain[1]];
                check_voxels_in_range(range_to_check);
            } else if search_domain[0][imin] >= domain_maxs[imin] {
                // Leaving the shape’s bounds.
                break;
            }
        } else {
            search_domain[0][imin] -= 1;
            search_domain[1][imin] -= 1;

            if search_domain[0][imin] >= domain_mins[imin] {
                // Check the voxels on the added row.
                let mut next_row = search_domain[1];
                next_row[imin] = search_domain[0][imin] + 1;

                let range_to_check = [search_domain[0], next_row];
                check_voxels_in_range(range_to_check);
            } else if search_domain[1][imin] <= domain_mins[imin] {
                // Leaving the shape’s bounds.
                break;
            }
        }
    }

    hit
}

/// Time Of Impact of any shape with a composite shape, under a rigid motion (translation + rotation).
pub fn cast_shapes_nonlinear_shape_voxels<D>(
    dispatcher: &D,
    motion1: &NonlinearRigidMotion,
    g1: &dyn Shape,
    motion2: &NonlinearRigidMotion,
    g2: &Voxels,
    start_time: Real,
    end_time: Real,
    stop_at_penetration: bool,
) -> Option<ShapeCastHit>
where
    D: ?Sized + QueryDispatcher,
{
    cast_shapes_nonlinear_voxels_shape(
        dispatcher,
        motion2,
        g2,
        motion1,
        g1,
        start_time,
        end_time,
        stop_at_penetration,
    )
    .map(|hit| hit.swapped())
}