parry3d/query/point/point_triangle.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
use crate::math::{Point, Real, Vector, DIM};
use crate::query::{PointProjection, PointQuery, PointQueryWithLocation};
use crate::shape::{FeatureId, Triangle, TrianglePointLocation};
#[inline]
fn compute_result(pt: &Point<Real>, proj: Point<Real>) -> PointProjection {
#[cfg(feature = "dim2")]
{
PointProjection::new(*pt == proj, proj)
}
#[cfg(feature = "dim3")]
{
// TODO: is this acceptable to assume the point is inside of the
// triangle if it is close enough?
PointProjection::new(relative_eq!(proj, *pt), proj)
}
}
impl PointQuery for Triangle {
#[inline]
fn project_local_point(&self, pt: &Point<Real>, solid: bool) -> PointProjection {
self.project_local_point_and_get_location(pt, solid).0
}
#[inline]
fn project_local_point_and_get_feature(
&self,
pt: &Point<Real>,
) -> (PointProjection, FeatureId) {
let (proj, loc) = if DIM == 2 {
self.project_local_point_and_get_location(pt, false)
} else {
self.project_local_point_and_get_location(pt, true)
};
let feature = match loc {
TrianglePointLocation::OnVertex(i) => FeatureId::Vertex(i),
#[cfg(feature = "dim3")]
TrianglePointLocation::OnEdge(i, _) => FeatureId::Edge(i),
#[cfg(feature = "dim2")]
TrianglePointLocation::OnEdge(i, _) => FeatureId::Face(i),
TrianglePointLocation::OnFace(i, _) => FeatureId::Face(i),
TrianglePointLocation::OnSolid => FeatureId::Face(0),
};
(proj, feature)
}
// NOTE: the default implementation of `.distance_to_point(...)` will return the error that was
// eaten by the `::approx_eq(...)` on `project_point(...)`.
}
impl PointQueryWithLocation for Triangle {
type Location = TrianglePointLocation;
#[inline]
fn project_local_point_and_get_location(
&self,
pt: &Point<Real>,
solid: bool,
) -> (PointProjection, Self::Location) {
// To understand the ideas, consider reading the slides below
// https://box2d.org/files/ErinCatto_GJK_GDC2010.pdf
let a = self.a;
let b = self.b;
let c = self.c;
let ab = b - a;
let ac = c - a;
let ap = pt - a;
let ab_ap = ab.dot(&ap);
let ac_ap = ac.dot(&ap);
if ab_ap <= 0.0 && ac_ap <= 0.0 {
// Voronoï region of `a`.
return (compute_result(pt, a), TrianglePointLocation::OnVertex(0));
}
let bp = pt - b;
let ab_bp = ab.dot(&bp);
let ac_bp = ac.dot(&bp);
if ab_bp >= 0.0 && ac_bp <= ab_bp {
// Voronoï region of `b`.
return (compute_result(pt, b), TrianglePointLocation::OnVertex(1));
}
let cp = pt - c;
let ab_cp = ab.dot(&cp);
let ac_cp = ac.dot(&cp);
if ac_cp >= 0.0 && ab_cp <= ac_cp {
// Voronoï region of `c`.
return (compute_result(pt, c), TrianglePointLocation::OnVertex(2));
}
enum ProjectionInfo {
OnAB,
OnAC,
OnBC,
// The usize indicates if we are on the CW side (0) or CCW side (1) of the face.
OnFace(usize, Real, Real, Real),
}
// Checks on which edge voronoï region the point is.
// For 2D and 3D, it uses explicit cross/perp products that are
// more numerically stable.
fn stable_check_edges_voronoi(
ab: &Vector<Real>,
ac: &Vector<Real>,
bc: &Vector<Real>,
ap: &Vector<Real>,
bp: &Vector<Real>,
cp: &Vector<Real>,
ab_ap: Real,
ab_bp: Real,
ac_ap: Real,
ac_cp: Real,
ac_bp: Real,
ab_cp: Real,
) -> ProjectionInfo {
#[cfg(feature = "dim2")]
{
let n = ab.perp(ac);
let vc = n * ab.perp(ap);
if vc < 0.0 && ab_ap >= 0.0 && ab_bp <= 0.0 {
return ProjectionInfo::OnAB;
}
let vb = -n * ac.perp(cp);
if vb < 0.0 && ac_ap >= 0.0 && ac_cp <= 0.0 {
return ProjectionInfo::OnAC;
}
let va = n * bc.perp(bp);
if va < 0.0 && ac_bp - ab_bp >= 0.0 && ab_cp - ac_cp >= 0.0 {
return ProjectionInfo::OnBC;
}
ProjectionInfo::OnFace(0, va, vb, vc)
}
#[cfg(feature = "dim3")]
{
let n;
#[cfg(feature = "improved_fixed_point_support")]
{
let scaled_n = ab.cross(&ac);
n = scaled_n.try_normalize(0.0).unwrap_or(scaled_n);
}
#[cfg(not(feature = "improved_fixed_point_support"))]
{
n = ab.cross(ac);
}
let vc = n.dot(&ab.cross(ap));
if vc < 0.0 && ab_ap >= 0.0 && ab_bp <= 0.0 {
return ProjectionInfo::OnAB;
}
let vb = -n.dot(&ac.cross(cp));
if vb < 0.0 && ac_ap >= 0.0 && ac_cp <= 0.0 {
return ProjectionInfo::OnAC;
}
let va = n.dot(&bc.cross(bp));
if va < 0.0 && ac_bp - ab_bp >= 0.0 && ab_cp - ac_cp >= 0.0 {
return ProjectionInfo::OnBC;
}
let clockwise = if n.dot(ap) >= 0.0 { 0 } else { 1 };
ProjectionInfo::OnFace(clockwise, va, vb, vc)
}
}
let bc = c - b;
match stable_check_edges_voronoi(
&ab, &ac, &bc, &ap, &bp, &cp, ab_ap, ab_bp, ac_ap, ac_cp, ac_bp, ab_cp,
) {
ProjectionInfo::OnAB => {
// Voronoï region of `ab`.
let v = ab_ap / ab.norm_squared();
let bcoords = [1.0 - v, v];
let res = a + ab * v;
return (
compute_result(pt, res),
TrianglePointLocation::OnEdge(0, bcoords),
);
}
ProjectionInfo::OnAC => {
// Voronoï region of `ac`.
let w = ac_ap / ac.norm_squared();
let bcoords = [1.0 - w, w];
let res = a + ac * w;
return (
compute_result(pt, res),
TrianglePointLocation::OnEdge(2, bcoords),
);
}
ProjectionInfo::OnBC => {
// Voronoï region of `bc`.
let w = bc.dot(&bp) / bc.norm_squared();
let bcoords = [1.0 - w, w];
let res = b + bc * w;
return (
compute_result(pt, res),
TrianglePointLocation::OnEdge(1, bcoords),
);
}
ProjectionInfo::OnFace(face_side, va, vb, vc) => {
// Voronoï region of the face.
if DIM != 2 {
// NOTE: in some cases, numerical instability
// may result in the denominator being zero
// when the triangle is nearly degenerate.
if va + vb + vc != 0.0 {
let denom = 1.0 / (va + vb + vc);
let v = vb * denom;
let w = vc * denom;
let bcoords = [1.0 - v - w, v, w];
let res = a + ab * v + ac * w;
return (
compute_result(pt, res),
TrianglePointLocation::OnFace(face_side as u32, bcoords),
);
}
}
}
}
// Special treatment if we work in 2d because in this case we really are inside of the
// object.
if solid {
(
PointProjection::new(true, *pt),
TrianglePointLocation::OnSolid,
)
} else {
// We have to project on the closest edge.
// TODO: this might be optimizable.
// TODO: be careful with numerical errors.
let v = ab_ap / (ab_ap - ab_bp); // proj on ab = a + ab * v
let w = ac_ap / (ac_ap - ac_cp); // proj on ac = a + ac * w
let u = (ac_bp - ab_bp) / (ac_bp - ab_bp + ab_cp - ac_cp); // proj on bc = b + bc * u
let bc = c - b;
let d_ab = ap.norm_squared() - (ab.norm_squared() * v * v);
let d_ac = ap.norm_squared() - (ac.norm_squared() * w * w);
let d_bc = bp.norm_squared() - (bc.norm_squared() * u * u);
let proj;
let loc;
if d_ab < d_ac {
if d_ab < d_bc {
// ab
let bcoords = [1.0 - v, v];
proj = a + ab * v;
loc = TrianglePointLocation::OnEdge(0, bcoords);
} else {
// bc
let bcoords = [1.0 - u, u];
proj = b + bc * u;
loc = TrianglePointLocation::OnEdge(1, bcoords);
}
} else if d_ac < d_bc {
// ac
let bcoords = [1.0 - w, w];
proj = a + ac * w;
loc = TrianglePointLocation::OnEdge(2, bcoords);
} else {
// bc
let bcoords = [1.0 - u, u];
proj = b + bc * u;
loc = TrianglePointLocation::OnEdge(1, bcoords);
}
(PointProjection::new(true, proj), loc)
}
}
}