1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use crate::math::Real;
#[cfg(feature = "dim2")]
use crate::math::Vector;
use crate::query::{Ray, RayCast, RayIntersection};
use crate::shape::{FeatureId, Triangle};
#[cfg(feature = "dim3")]
use {crate::math::Point, na::Vector3};

#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()

impl RayCast for Triangle {
    #[inline]
    #[cfg(feature = "dim2")]
    fn cast_local_ray_and_get_normal(
        &self,
        ray: &Ray,
        max_time_of_impact: Real,
        solid: bool,
    ) -> Option<RayIntersection> {
        let edges = self.edges();

        if solid {
            // Check if ray starts in triangle
            let perp_sign1 = edges[0].scaled_direction().perp(&(ray.origin - edges[0].a)) > 0.0;
            let perp_sign2 = edges[1].scaled_direction().perp(&(ray.origin - edges[1].a)) > 0.0;
            let perp_sign3 = edges[2].scaled_direction().perp(&(ray.origin - edges[2].a)) > 0.0;

            if perp_sign1 == perp_sign2 && perp_sign1 == perp_sign3 {
                return Some(RayIntersection::new(0.0, Vector::y(), FeatureId::Face(0)));
            }
        }

        let mut best = None;
        let mut smallest_toi = Real::MAX;

        for edge in &edges {
            if let Some(inter) = edge.cast_local_ray_and_get_normal(ray, max_time_of_impact, solid)
            {
                if inter.time_of_impact < smallest_toi {
                    smallest_toi = inter.time_of_impact;
                    best = Some(inter);
                }
            }
        }

        best
    }

    #[inline]
    #[cfg(feature = "dim3")]
    fn cast_local_ray_and_get_normal(
        &self,
        ray: &Ray,
        max_time_of_impact: Real,
        _: bool,
    ) -> Option<RayIntersection> {
        let inter = local_ray_intersection_with_triangle(&self.a, &self.b, &self.c, ray)?.0;

        if inter.time_of_impact <= max_time_of_impact {
            Some(inter)
        } else {
            None
        }
    }
}

/// Computes the intersection between a triangle and a ray.
///
/// If an intersection is found, the time of impact, the normal and the barycentric coordinates of
/// the intersection point are returned.
#[cfg(feature = "dim3")]
pub fn local_ray_intersection_with_triangle(
    a: &Point<Real>,
    b: &Point<Real>,
    c: &Point<Real>,
    ray: &Ray,
) -> Option<(RayIntersection, Vector3<Real>)> {
    let ab = *b - *a;
    let ac = *c - *a;

    // normal
    let n = ab.cross(&ac);
    let d = n.dot(&ray.dir);

    // the normal and the ray direction are parallel
    if d == 0.0 {
        return None;
    }

    let ap = ray.origin - *a;
    let t = ap.dot(&n);

    // the ray does not intersect the halfspace defined by the triangle
    if (t < 0.0 && d < 0.0) || (t > 0.0 && d > 0.0) {
        return None;
    }

    let fid = if d < 0.0 { 0 } else { 1 };

    let d = d.abs();

    //
    // intersection: compute barycentric coordinates
    //
    let e = -ray.dir.cross(&ap);

    let mut v;
    let mut w;
    let time_of_impact;
    let normal;

    if t < 0.0 {
        v = -ac.dot(&e);

        if v < 0.0 || v > d {
            return None;
        }

        w = ab.dot(&e);

        if w < 0.0 || v + w > d {
            return None;
        }

        let invd = 1.0 / d;
        time_of_impact = -t * invd;
        normal = -n.normalize();
        v *= invd;
        w *= invd;
    } else {
        v = ac.dot(&e);

        if v < 0.0 || v > d {
            return None;
        }

        w = -ab.dot(&e);

        if w < 0.0 || v + w > d {
            return None;
        }

        let invd = 1.0 / d;
        time_of_impact = t * invd;
        normal = n.normalize();
        v *= invd;
        w *= invd;
    }

    Some((
        RayIntersection::new(time_of_impact, normal, FeatureId::Face(fid)),
        Vector3::new(-v - w + 1.0, v, w),
    ))
}