parry3d/query/sat/
sat_cuboid_triangle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#[cfg(feature = "dim3")]
use crate::approx::AbsDiffEq;
use crate::math::{Isometry, Real, Vector};
#[cfg(feature = "dim3")]
use crate::query::sat;
#[cfg(feature = "dim2")]
use crate::query::sat::support_map_support_map_compute_separation;
use crate::shape::{Cuboid, SupportMap, Triangle};

/// Finds the best separating edge between a cuboid and a triangle.
///
/// All combinations of edges from the cuboid and the triangle are taken into
/// account.
#[cfg(feature = "dim3")]
#[inline(always)]
pub fn cuboid_triangle_find_local_separating_edge_twoway(
    cube1: &Cuboid,
    triangle2: &Triangle,
    pos12: &Isometry<Real>,
) -> (Real, Vector<Real>) {
    // NOTE: everything in this method will be expressed
    // in the local-space of the first triangle. So we
    // don't bother adding 2_1 suffixes (e.g. `a2_1`) to everything in
    // order to keep the code more readable.
    let a = pos12 * triangle2.a;
    let b = pos12 * triangle2.b;
    let c = pos12 * triangle2.c;

    let ab = b - a;
    let bc = c - b;
    let ca = a - c;

    // We have 3 * 3 = 9 axes to test.
    let axes = [
        // Vector::{x, y ,z}().cross(ab)
        Vector::new(0.0, -ab.z, ab.y),
        Vector::new(ab.z, 0.0, -ab.x),
        Vector::new(-ab.y, ab.x, 0.0),
        // Vector::{x, y ,z}().cross(bc)
        Vector::new(0.0, -bc.z, bc.y),
        Vector::new(bc.z, 0.0, -bc.x),
        Vector::new(-bc.y, bc.x, 0.0),
        // Vector::{x, y ,z}().cross(ca)
        Vector::new(0.0, -ca.z, ca.y),
        Vector::new(ca.z, 0.0, -ca.x),
        Vector::new(-ca.y, ca.x, 0.0),
    ];

    let tri_dots = [
        (axes[0].dot(&a.coords), axes[0].dot(&c.coords)),
        (axes[1].dot(&a.coords), axes[1].dot(&c.coords)),
        (axes[2].dot(&a.coords), axes[2].dot(&c.coords)),
        (axes[3].dot(&a.coords), axes[3].dot(&c.coords)),
        (axes[4].dot(&a.coords), axes[4].dot(&c.coords)),
        (axes[5].dot(&a.coords), axes[5].dot(&c.coords)),
        (axes[6].dot(&a.coords), axes[6].dot(&b.coords)),
        (axes[7].dot(&a.coords), axes[7].dot(&b.coords)),
        (axes[8].dot(&a.coords), axes[8].dot(&b.coords)),
    ];

    let mut best_sep = -Real::MAX;
    let mut best_axis = axes[0];

    for (i, axis) in axes.iter().enumerate() {
        let axis_norm_squared = axis.norm_squared();

        if axis_norm_squared > Real::default_epsilon() {
            let axis_norm = na::ComplexField::sqrt(axis_norm_squared);

            // NOTE: for both axis and -axis, the dot1 will have the same
            // value because of the cuboid's symmetry.
            let local_pt1 = cube1.local_support_point(axis);
            let dot1 = local_pt1.coords.dot(axis) / axis_norm;

            let (dot2_min, dot2_max) = crate::utils::sort2(tri_dots[i].0, tri_dots[i].1);

            let separation_a = dot2_min / axis_norm - dot1; // separation on axis
            let separation_b = -dot2_max / axis_norm - dot1; // separation on -axis

            if separation_a > best_sep {
                best_sep = separation_a;
                best_axis = *axis / axis_norm;
            }

            if separation_b > best_sep {
                best_sep = separation_b;
                best_axis = -*axis / axis_norm;
            }
        }
    }

    (best_sep, best_axis)
}

/// Finds the best separating normal between a triangle and a convex shape implementing the `SupportMap` trait.
///
/// Only the normals of `triangle1` are tested.
#[cfg(feature = "dim2")]
pub fn triangle_support_map_find_local_separating_normal_oneway(
    triangle1: &Triangle,
    shape2: &impl SupportMap,
    pos12: &Isometry<Real>,
) -> (Real, Vector<Real>) {
    let mut best_sep = -Real::MAX;
    let mut best_normal = Vector::zeros();

    for edge in &triangle1.edges() {
        if let Some(normal) = edge.normal() {
            let sep = support_map_support_map_compute_separation(triangle1, shape2, pos12, &normal);

            if sep > best_sep {
                best_sep = sep;
                best_normal = *normal;
            }
        }
    }

    (best_sep, best_normal)
}

/// Finds the best separating normal between a triangle and a cuboid.
///
/// Only the normals of `triangle1` are tested.
#[cfg(feature = "dim2")]
pub fn triangle_cuboid_find_local_separating_normal_oneway(
    triangle1: &Triangle,
    shape2: &Cuboid,
    pos12: &Isometry<Real>,
) -> (Real, Vector<Real>) {
    triangle_support_map_find_local_separating_normal_oneway(triangle1, shape2, pos12)
}

/// Finds the best separating normal a triangle and a cuboid.
///
/// Only the normals of `triangle1` are tested.
#[cfg(feature = "dim3")]
#[inline(always)]
pub fn triangle_cuboid_find_local_separating_normal_oneway(
    triangle1: &Triangle,
    shape2: &Cuboid,
    pos12: &Isometry<Real>,
) -> (Real, Vector<Real>) {
    sat::point_cuboid_find_local_separating_normal_oneway(
        triangle1.a,
        triangle1.normal(),
        shape2,
        pos12,
    )
}