1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
use crate::bounding_volume::BoundingVolume;
use crate::math::{Isometry, Real, Vector};
use crate::query::details::ShapeCastOptions;
use crate::query::{QueryDispatcher, Ray, ShapeCastHit, Unsupported};
use crate::shape::{HeightField, Shape};
#[cfg(feature = "dim3")]
use crate::{bounding_volume::Aabb, query::RayCast};

/// Time Of Impact between a moving shape and a heightfield.
#[cfg(feature = "dim2")]
pub fn cast_shapes_heightfield_shape<D: ?Sized + QueryDispatcher>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    vel12: &Vector<Real>,
    heightfield1: &HeightField,
    g2: &dyn Shape,
    options: ShapeCastOptions,
) -> Result<Option<ShapeCastHit>, Unsupported> {
    let aabb2_1 = g2.compute_aabb(pos12).loosened(options.target_distance);
    let ray = Ray::new(aabb2_1.center(), *vel12);

    let mut curr_range = heightfield1.unclamped_elements_range_in_local_aabb(&aabb2_1);
    // Enlarge the range by 1 to account for movement within a cell.
    let right = ray.dir.x > 0.0;

    if right {
        curr_range.end += 1;
    } else {
        curr_range.start -= 1;
    }

    let mut best_hit = None::<ShapeCastHit>;

    /*
     * Test the segment under the ray.
     */
    let clamped_curr_range = curr_range.start.clamp(0, heightfield1.num_cells() as isize) as usize
        ..curr_range.end.clamp(0, heightfield1.num_cells() as isize) as usize;
    for curr in clamped_curr_range {
        if let Some(seg) = heightfield1.segment_at(curr) {
            // TODO: pre-check using a ray-cast on the Aabbs first?
            if let Some(hit) = dispatcher.cast_shapes(pos12, vel12, &seg, g2, options)? {
                if hit.time_of_impact < best_hit.map(|h| h.time_of_impact).unwrap_or(Real::MAX) {
                    best_hit = Some(hit);
                }
            }
        }
    }

    /*
     * Test other segments in the path of the ray.
     */
    if ray.dir.x == 0.0 {
        return Ok(best_hit);
    }

    let cell_width = heightfield1.cell_width();
    let start_x = heightfield1.start_x();

    let mut curr_elt = if right {
        (curr_range.end - 1).max(0)
    } else {
        curr_range.start.min(heightfield1.num_cells() as isize - 1)
    };

    while (right && curr_elt < heightfield1.num_cells() as isize - 1) || (!right && curr_elt > 0) {
        let curr_param;

        if right {
            curr_elt += 1;
            curr_param = (cell_width * na::convert::<f64, Real>(curr_elt as f64) + start_x
                - ray.origin.x)
                / ray.dir.x;
        } else {
            curr_param =
                (ray.origin.x - cell_width * na::convert::<f64, Real>(curr_elt as f64) - start_x)
                    / ray.dir.x;
            curr_elt -= 1;
        }

        if curr_param >= options.max_time_of_impact {
            break;
        }

        if let Some(seg) = heightfield1.segment_at(curr_elt as usize) {
            // TODO: pre-check using a ray-cast on the Aabbs first?
            if let Some(hit) = dispatcher.cast_shapes(pos12, vel12, &seg, g2, options)? {
                if hit.time_of_impact < best_hit.map(|h| h.time_of_impact).unwrap_or(Real::MAX) {
                    best_hit = Some(hit);
                }
            }
        }
    }

    Ok(best_hit)
}

/// Time Of Impact between a moving shape and a heightfield.
#[cfg(feature = "dim3")]
pub fn cast_shapes_heightfield_shape<D: ?Sized + QueryDispatcher>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    vel12: &Vector<Real>,
    heightfield1: &HeightField,
    g2: &dyn Shape,
    options: ShapeCastOptions,
) -> Result<Option<ShapeCastHit>, Unsupported> {
    let aabb1 = heightfield1.local_aabb();
    let mut aabb2_1 = g2.compute_aabb(pos12).loosened(options.target_distance);
    let ray = Ray::new(aabb2_1.center(), *vel12);

    // Find the first hit between the aabbs.
    let hext2_1 = aabb2_1.half_extents();
    let msum = Aabb::new(aabb1.mins - hext2_1, aabb1.maxs + hext2_1);
    if let Some(time_of_impact) = msum.cast_local_ray(&ray, options.max_time_of_impact, true) {
        // Advance the aabb2 to the hit point.
        aabb2_1.mins += ray.dir * time_of_impact;
        aabb2_1.maxs += ray.dir * time_of_impact;
    } else {
        return Ok(None);
    }

    let (mut curr_range_i, mut curr_range_j) =
        heightfield1.unclamped_elements_range_in_local_aabb(&aabb2_1);
    let (ncells_i, ncells_j) = heightfield1.num_cells_ij();
    let mut best_hit = None::<ShapeCastHit>;

    /*
     * Enlarge the ranges by 1 to account for any movement within one cell.
     */
    if ray.dir.z > 0.0 {
        curr_range_i.end += 1;
    } else if ray.dir.z < 0.0 {
        curr_range_i.start -= 1;
    }

    if ray.dir.x > 0.0 {
        curr_range_j.end += 1;
    } else if ray.dir.x < 0.0 {
        curr_range_j.start -= 1;
    }

    /*
     * Test the segment under the ray.
     */
    let clamped_curr_range_i = curr_range_i.start.clamp(0, ncells_i as isize)
        ..curr_range_i.end.clamp(0, ncells_i as isize);
    let clamped_curr_range_j = curr_range_j.start.clamp(0, ncells_j as isize)
        ..curr_range_j.end.clamp(0, ncells_j as isize);

    let mut hit_triangles = |i, j| {
        if i >= 0 && j >= 0 {
            let (tri_a, tri_b) = heightfield1.triangles_at(i as usize, j as usize);
            for tri in [tri_a, tri_b].into_iter().flatten() {
                // TODO: pre-check using a ray-cast on the Aabbs first?
                if let Some(hit) = dispatcher.cast_shapes(pos12, vel12, &tri, g2, options)? {
                    if hit.time_of_impact < best_hit.map(|h| h.time_of_impact).unwrap_or(Real::MAX)
                    {
                        best_hit = Some(hit);
                    }
                }
            }
        }

        Ok(())
    };

    for i in clamped_curr_range_i {
        for j in clamped_curr_range_j.clone() {
            hit_triangles(i, j)?;
        }
    }

    if ray.dir.y == 0.0 {
        return Ok(best_hit);
    }

    let mut cell = heightfield1.unclamped_cell_at_point(&aabb2_1.center());

    loop {
        let prev_cell = cell;

        /*
         * Find the next cell to cast the ray on.
         */
        let toi_x = if ray.dir.x > 0.0 {
            let x = heightfield1.signed_x_at(cell.1 + 1);
            (x - ray.origin.x) / ray.dir.x
        } else if ray.dir.x < 0.0 {
            let x = heightfield1.signed_x_at(cell.1);
            (x - ray.origin.x) / ray.dir.x
        } else {
            Real::MAX
        };

        let toi_z = if ray.dir.z > 0.0 {
            let z = heightfield1.signed_z_at(cell.0 + 1);
            (z - ray.origin.z) / ray.dir.z
        } else if ray.dir.z < 0.0 {
            let z = heightfield1.signed_z_at(cell.0);
            (z - ray.origin.z) / ray.dir.z
        } else {
            Real::MAX
        };

        if toi_x > options.max_time_of_impact && toi_z > options.max_time_of_impact {
            break;
        }

        if toi_x >= 0.0 && toi_x <= toi_z {
            cell.1 += ray.dir.x.signum() as isize;
        }

        if toi_z >= 0.0 && toi_z <= toi_x {
            cell.0 += ray.dir.z.signum() as isize;
        }

        if cell == prev_cell {
            break;
        }

        let cell_diff = (cell.0 - prev_cell.0, cell.1 - prev_cell.1);
        curr_range_i.start += cell_diff.0;
        curr_range_i.end += cell_diff.0;
        curr_range_j.start += cell_diff.1;
        curr_range_j.end += cell_diff.1;

        let new_line_i = if cell_diff.0 > 0 {
            curr_range_i.end
        } else {
            curr_range_i.start
        };

        let new_line_j = if cell_diff.1 > 0 {
            curr_range_j.end
        } else {
            curr_range_j.start
        };

        let ignore_line_i = new_line_i < 0 || new_line_i >= ncells_i as isize;
        let ignore_line_j = new_line_j < 0 || new_line_j >= ncells_j as isize;

        if ignore_line_i && ignore_line_j {
            break;
        }

        if !ignore_line_i && cell_diff.0 != 0 {
            for j in curr_range_j.clone() {
                hit_triangles(new_line_i, j)?;
            }
        }

        if !ignore_line_j && cell_diff.1 != 0 {
            for i in curr_range_i.clone() {
                hit_triangles(i, new_line_j)?;
            }
        }
    }

    Ok(best_hit)
}

/// Time Of Impact between a moving shape and a heightfield.
pub fn cast_shapes_shape_heightfield<D: ?Sized + QueryDispatcher>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    vel12: &Vector<Real>,
    g1: &dyn Shape,
    heightfield2: &HeightField,
    options: ShapeCastOptions,
) -> Result<Option<ShapeCastHit>, Unsupported> {
    Ok(cast_shapes_heightfield_shape(
        dispatcher,
        &pos12.inverse(),
        &-pos12.inverse_transform_vector(vel12),
        heightfield2,
        g1,
        options,
    )?
    .map(|hit| hit.swapped()))
}