1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
use crate::math::{Point, Real, Vector, DIM};
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, PolygonalFeatureMap, SupportMap};
// use crate::transformation;
use crate::utils::hashmap::{Entry, HashMap};
use crate::utils::{self, SortedPair};
use na::{self, ComplexField, Point2, Unit};
use std::f64;

#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()

#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Vertex {
    pub first_adj_face_or_edge: u32,
    pub num_adj_faces_or_edge: u32,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Edge {
    pub vertices: Point2<u32>,
    pub faces: Point2<u32>,
    pub dir: Unit<Vector<Real>>,
    deleted: bool,
}

impl Edge {
    fn other_triangle(&self, id: u32) -> u32 {
        if id == self.faces[0] {
            self.faces[1]
        } else {
            self.faces[0]
        }
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
    archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Face {
    pub first_vertex_or_edge: u32,
    pub num_vertices_or_edges: u32,
    pub normal: Unit<Vector<Real>>,
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Triangle {
    vertices: [u32; 3],
    edges: [u32; 3],
    normal: Vector<Real>,
    parent_face: Option<u32>,
    is_degenerate: bool,
}

impl Triangle {
    fn next_edge_id(&self, id: u32) -> u32 {
        for i in 0..3 {
            if self.edges[i] == id {
                return (i as u32 + 1) % 3;
            }
        }

        unreachable!()
    }
}

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
    feature = "rkyv",
    derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
    archive(check_bytes)
)]
#[derive(PartialEq, Debug, Clone)]
/// A convex polyhedron without degenerate faces.
pub struct ConvexPolyhedron {
    points: Vec<Point<Real>>,
    vertices: Vec<Vertex>,
    faces: Vec<Face>,
    edges: Vec<Edge>,
    // Faces adjascent to a vertex.
    faces_adj_to_vertex: Vec<u32>,
    // Edges adjascent to a vertex.
    edges_adj_to_vertex: Vec<u32>,
    // Edges adjascent to a face.
    edges_adj_to_face: Vec<u32>,
    // Vertices adjascent to a face.
    vertices_adj_to_face: Vec<u32>,
}

impl ConvexPolyhedron {
    /// Creates a new convex polyhedron from an arbitrary set of points.
    ///
    /// This explicitly computes the convex hull of the given set of points. Use
    /// Returns `None` if the convex hull computation failed.
    pub fn from_convex_hull(points: &[Point<Real>]) -> Option<ConvexPolyhedron> {
        let (vertices, indices) = crate::transformation::convex_hull(points);
        Self::from_convex_mesh(vertices, &indices)
    }

    /// Attempts to create a new solid assumed to be convex from the set of points and indices.
    ///
    /// The given points and index information are assumed to describe a convex polyhedron.
    /// It it is not, weird results may be produced.
    ///
    /// # Return
    ///
    /// Retruns `None` if he given solid is not manifold (contains t-junctions, not closed, etc.)
    pub fn from_convex_mesh(
        points: Vec<Point<Real>>,
        indices: &[[u32; DIM]],
    ) -> Option<ConvexPolyhedron> {
        let eps = ComplexField::sqrt(crate::math::DEFAULT_EPSILON);

        let mut vertices = Vec::new();
        let mut edges = Vec::<Edge>::new();
        let mut faces = Vec::<Face>::new();
        let mut triangles = Vec::new();
        let mut edge_map = HashMap::default();

        let mut faces_adj_to_vertex = Vec::new();
        let mut edges_adj_to_vertex = Vec::new();
        let mut edges_adj_to_face = Vec::new();
        let mut vertices_adj_to_face = Vec::new();

        if points.len() + indices.len() <= 2 {
            return None;
        }

        //// Euler characteristic.
        let nedges = points.len() + indices.len() - 2;
        edges.reserve(nedges);

        /*
         *  Initialize triangles and edges adjacency information.
         */
        for idx in indices {
            let mut edges_id = [u32::MAX; DIM];
            let face_id = triangles.len();

            if idx[0] == idx[1] || idx[0] == idx[2] || idx[1] == idx[2] {
                return None;
            }

            for i1 in 0..3 {
                // Deal with edges.
                let i2 = (i1 + 1) % 3;
                let key = SortedPair::new(idx[i1], idx[i2]);

                match edge_map.entry(key) {
                    Entry::Occupied(e) => {
                        let edge = &mut edges[*e.get() as usize];
                        let out_face_id = &mut edge.faces[1];

                        if *out_face_id == u32::MAX {
                            edges_id[i1] = *e.get();
                            *out_face_id = face_id as u32
                        } else {
                            // We have a t-junction.
                            return None;
                        }
                    }
                    Entry::Vacant(e) => {
                        edges_id[i1] = *e.insert(edges.len() as u32);

                        let dir = Unit::try_new(
                            points[idx[i2] as usize] - points[idx[i1] as usize],
                            crate::math::DEFAULT_EPSILON,
                        );

                        edges.push(Edge {
                            vertices: Point2::new(idx[i1], idx[i2]),
                            faces: Point2::new(face_id as u32, u32::MAX),
                            dir: dir.unwrap_or(Vector::x_axis()),
                            deleted: dir.is_none(),
                        });
                    }
                }
            }

            let normal = utils::ccw_face_normal([
                &points[idx[0] as usize],
                &points[idx[1] as usize],
                &points[idx[2] as usize],
            ]);
            let triangle = Triangle {
                vertices: *idx,
                edges: edges_id,
                normal: normal.map(|n| *n).unwrap_or(Vector::zeros()),
                parent_face: None,
                is_degenerate: normal.is_none(),
            };

            triangles.push(triangle);
        }

        // Find edges that must be deleted.

        for e in &mut edges {
            let tri1 = triangles.get(e.faces[0] as usize)?;
            let tri2 = triangles.get(e.faces[1] as usize)?;
            if tri1.normal.dot(&tri2.normal) > 1.0 - eps {
                e.deleted = true;
            }
        }

        /*
         * Extract faces by following  contours.
         */
        for i in 0..triangles.len() {
            if triangles[i].parent_face.is_none() {
                for j1 in 0..3 {
                    if !edges[triangles[i].edges[j1] as usize].deleted {
                        // Create a new face, setup its first edge/vertex and construct it.
                        let new_face_id = faces.len();
                        let mut new_face = Face {
                            first_vertex_or_edge: edges_adj_to_face.len() as u32,
                            num_vertices_or_edges: 1,
                            normal: Unit::new_unchecked(triangles[i].normal),
                        };

                        edges_adj_to_face.push(triangles[i].edges[j1]);
                        vertices_adj_to_face.push(triangles[i].vertices[j1]);

                        let j2 = (j1 + 1) % 3;
                        let start_vertex = triangles[i].vertices[j1];

                        // NOTE: variables ending with _id are identifier on the
                        // fields of a triangle. Other variables are identifier on
                        // the triangles/edges/vertices arrays.
                        let mut curr_triangle = i;
                        let mut curr_edge_id = j2;

                        while triangles[curr_triangle].vertices[curr_edge_id] != start_vertex {
                            let curr_edge = triangles[curr_triangle].edges[curr_edge_id];
                            let curr_vertex = triangles[curr_triangle].vertices[curr_edge_id];
                            // NOTE: we should use this assertion. However, it can currently
                            // happen if there are some isolated non-deleted edges due to
                            // rounding errors.
                            //
                            // assert!(triangles[curr_triangle].parent_face.is_none());
                            triangles[curr_triangle].parent_face = Some(new_face_id as u32);

                            if !edges[curr_edge as usize].deleted {
                                edges_adj_to_face.push(curr_edge);
                                vertices_adj_to_face.push(curr_vertex);
                                new_face.num_vertices_or_edges += 1;

                                curr_edge_id = (curr_edge_id + 1) % 3;
                            } else {
                                // Find adjacent edge on the next triangle.
                                curr_triangle = edges[curr_edge as usize]
                                    .other_triangle(curr_triangle as u32)
                                    as usize;
                                curr_edge_id =
                                    triangles[curr_triangle].next_edge_id(curr_edge) as usize;
                                assert!(
                                    triangles[curr_triangle].vertices[curr_edge_id] == curr_vertex
                                );
                            }
                        }

                        if new_face.num_vertices_or_edges > 2 {
                            // Sometimes degenerate faces may be generated
                            // due to numerical errors resulting in an isolated
                            // edge not being deleted.
                            //
                            // This kind of degenerate faces are not valid.
                            faces.push(new_face);
                        }
                        break;
                    }
                }
            }
        }

        // Update face ids inside edges so that they point to the faces instead of the triangles.
        for e in &mut edges {
            if let Some(fid) = triangles.get(e.faces[0] as usize)?.parent_face {
                e.faces[0] = fid;
            }

            if let Some(fid) = triangles.get(e.faces[1] as usize)?.parent_face {
                e.faces[1] = fid;
            }
        }

        /*
         * Initialize vertices
         */
        let empty_vertex = Vertex {
            first_adj_face_or_edge: 0,
            num_adj_faces_or_edge: 0,
        };

        vertices.resize(points.len(), empty_vertex);

        // First, find their multiplicities.
        for face in &faces {
            let first_vid = face.first_vertex_or_edge;
            let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;

            for i in &vertices_adj_to_face[first_vid as usize..last_vid as usize] {
                vertices[*i as usize].num_adj_faces_or_edge += 1;
            }
        }

        // Now, find their starting id.
        let mut total_num_adj_faces = 0;
        for v in &mut vertices {
            v.first_adj_face_or_edge = total_num_adj_faces;
            total_num_adj_faces += v.num_adj_faces_or_edge;
        }
        faces_adj_to_vertex.resize(total_num_adj_faces as usize, 0);
        edges_adj_to_vertex.resize(total_num_adj_faces as usize, 0);

        // Reset the number of adjascent faces.
        // It will be set againt to the right value as
        // the adjascent face list is filled.
        for v in &mut vertices {
            v.num_adj_faces_or_edge = 0;
        }

        for (face_id, face) in faces.iter().enumerate() {
            let first_vid = face.first_vertex_or_edge;
            let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;

            for vid in first_vid..last_vid {
                let v = &mut vertices[vertices_adj_to_face[vid as usize] as usize];
                faces_adj_to_vertex
                    [(v.first_adj_face_or_edge + v.num_adj_faces_or_edge) as usize] =
                    face_id as u32;
                edges_adj_to_vertex
                    [(v.first_adj_face_or_edge + v.num_adj_faces_or_edge) as usize] =
                    edges_adj_to_face[vid as usize];
                v.num_adj_faces_or_edge += 1;
            }
        }

        // Note numerical errors may throw off the Euler characteristic.
        // So we don't check it right now.

        let res = ConvexPolyhedron {
            points,
            vertices,
            faces,
            edges,
            faces_adj_to_vertex,
            edges_adj_to_vertex,
            edges_adj_to_face,
            vertices_adj_to_face,
        };

        // TODO: for debug.
        // res.check_geometry();

        Some(res)
    }

    /// Verify if this convex polyhedron is actually convex.
    #[inline]
    pub fn check_geometry(&self) {
        for face in &self.faces {
            let p0 =
                self.points[self.vertices_adj_to_face[face.first_vertex_or_edge as usize] as usize];

            for v in &self.points {
                assert!((v - p0).dot(face.normal.as_ref()) <= crate::math::DEFAULT_EPSILON);
            }
        }
    }

    /// The set of vertices of this convex polyhedron.
    #[inline]
    pub fn points(&self) -> &[Point<Real>] {
        &self.points[..]
    }

    /// The topology of the vertices of this convex polyhedron.
    #[inline]
    pub fn vertices(&self) -> &[Vertex] {
        &self.vertices[..]
    }

    /// The topology of the edges of this convex polyhedron.
    #[inline]
    pub fn edges(&self) -> &[Edge] {
        &self.edges[..]
    }

    /// The topology of the faces of this convex polyhedron.
    #[inline]
    pub fn faces(&self) -> &[Face] {
        &self.faces[..]
    }

    /// The array containing the indices of the vertices adjacent to each face.
    #[inline]
    pub fn vertices_adj_to_face(&self) -> &[u32] {
        &self.vertices_adj_to_face[..]
    }

    /// The array containing the indices of the edges adjacent to each face.
    #[inline]
    pub fn edges_adj_to_face(&self) -> &[u32] {
        &self.edges_adj_to_face[..]
    }

    /// The array containing the indices of the faces adjacent to each vertex.
    #[inline]
    pub fn faces_adj_to_vertex(&self) -> &[u32] {
        &self.faces_adj_to_vertex[..]
    }

    /// Computes a scaled version of this convex polygon.
    ///
    /// Returns `None` if the result had degenerate normals (for example if
    /// the scaling factor along one axis is zero).
    pub fn scaled(mut self, scale: &Vector<Real>) -> Option<Self> {
        self.points
            .iter_mut()
            .for_each(|pt| pt.coords.component_mul_assign(scale));

        for f in &mut self.faces {
            f.normal = Unit::try_new(f.normal.component_mul(scale), 0.0).unwrap_or(f.normal);
        }

        for e in &mut self.edges {
            e.dir = Unit::try_new(e.dir.component_mul(scale), 0.0).unwrap_or(e.dir);
        }

        Some(self)
    }

    fn support_feature_id_toward_eps(
        &self,
        local_dir: &Unit<Vector<Real>>,
        eps: Real,
    ) -> FeatureId {
        let (seps, ceps) = ComplexField::sin_cos(eps);
        let support_pt_id = utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points);
        let vertex = &self.vertices[support_pt_id];

        // Check faces.
        for i in 0..vertex.num_adj_faces_or_edge {
            let face_id = self.faces_adj_to_vertex[(vertex.first_adj_face_or_edge + i) as usize];
            let face = &self.faces[face_id as usize];

            if face.normal.dot(local_dir.as_ref()) >= ceps {
                return FeatureId::Face(face_id);
            }
        }

        // Check edges.
        for i in 0..vertex.num_adj_faces_or_edge {
            let edge_id = self.edges_adj_to_vertex[(vertex.first_adj_face_or_edge + i) as usize];
            let edge = &self.edges[edge_id as usize];

            if edge.dir.dot(local_dir.as_ref()).abs() <= seps {
                return FeatureId::Edge(edge_id);
            }
        }

        // The vertex is the support feature.
        FeatureId::Vertex(support_pt_id as u32)
    }

    /// Computes the ID of the features with a normal that maximize the dot-product with `local_dir`.
    pub fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
        let eps: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
        self.support_feature_id_toward_eps(local_dir, eps)
    }

    /// The normal of the given feature.
    pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
        match feature {
            FeatureId::Face(id) => Some(self.faces[id as usize].normal),
            FeatureId::Edge(id) => {
                let edge = &self.edges[id as usize];
                Some(Unit::new_normalize(
                    *self.faces[edge.faces[0] as usize].normal
                        + *self.faces[edge.faces[1] as usize].normal,
                ))
            }
            FeatureId::Vertex(id) => {
                let vertex = &self.vertices[id as usize];
                let first = vertex.first_adj_face_or_edge;
                let last = vertex.first_adj_face_or_edge + vertex.num_adj_faces_or_edge;
                let mut normal = Vector::zeros();

                for face in &self.faces_adj_to_vertex[first as usize..last as usize] {
                    normal += *self.faces[*face as usize].normal
                }

                Some(Unit::new_normalize(normal))
            }
            FeatureId::Unknown => None,
        }
    }
}

impl SupportMap for ConvexPolyhedron {
    #[inline]
    fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
        utils::point_cloud_support_point(dir, self.points())
    }
}

impl PolygonalFeatureMap for ConvexPolyhedron {
    fn local_support_feature(&self, dir: &Unit<Vector<Real>>, out_feature: &mut PolygonalFeature) {
        let mut best_fid = 0;
        let mut best_dot = self.faces[0].normal.dot(dir);

        for (fid, face) in self.faces[1..].iter().enumerate() {
            let new_dot = face.normal.dot(dir);

            if new_dot > best_dot {
                best_fid = fid + 1;
                best_dot = new_dot;
            }
        }

        let face = &self.faces[best_fid];
        let i1 = face.first_vertex_or_edge;
        // TODO: if there are more than 4 vertices, we need to select four vertices that maximize the area.
        let num_vertices = face.num_vertices_or_edges.min(4);
        let i2 = i1 + num_vertices;

        for (i, (vid, eid)) in self.vertices_adj_to_face[i1 as usize..i2 as usize]
            .iter()
            .zip(self.edges_adj_to_face[i1 as usize..i2 as usize].iter())
            .enumerate()
        {
            out_feature.vertices[i] = self.points[*vid as usize];
            out_feature.vids[i] = PackedFeatureId::vertex(*vid);
            out_feature.eids[i] = PackedFeatureId::edge(*eid);
        }

        out_feature.fid = PackedFeatureId::face(best_fid as u32);
        out_feature.num_vertices = num_vertices as usize;
    }

    fn is_convex_polyhedron(&self) -> bool {
        true
    }
}

/*
impl ConvexPolyhedron for ConvexPolyhedron {
    fn vertex(&self, id: FeatureId) -> Point<Real> {
        self.points[id.unwrap_vertex() as usize]
    }

    fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
        let edge = &self.edges[id.unwrap_edge() as usize];
        let v1 = edge.vertices[0];
        let v2 = edge.vertices[1];

        (
            self.points[v1 as usize],
            self.points[v2 as usize],
            FeatureId::Vertex(v1),
            FeatureId::Vertex(v2),
        )
    }

    fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
        out.clear();

        let face = &self.faces[id.unwrap_face() as usize];
        let first_vertex = face.first_vertex_or_edge;
        let last_vertex = face.first_vertex_or_edge + face.num_vertices_or_edges;

        for i in first_vertex..last_vertex {
            let vid = self.vertices_adj_to_face[i];
            let eid = self.edges_adj_to_face[i];
            out.push(self.points[vid], FeatureId::Vertex(vid));
            out.push_edge_feature_id(FeatureId::Edge(eid));
        }

        out.set_normal(face.normal);
        out.set_feature_id(id);
        out.recompute_edge_normals();
    }

    fn support_face_toward(
        &self,
        m: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        out: &mut ConvexPolygonalFeature,
    ) {
        let ls_dir = m.inverse_transform_vector(dir);
        let mut best_face = 0;
        let mut max_dot = self.faces[0].normal.dot(&ls_dir);

        for i in 1..self.faces.len() {
            let face = &self.faces[i];
            let dot = face.normal.dot(&ls_dir);

            if dot > max_dot {
                max_dot = dot;
                best_face = i;
            }
        }

        self.face(FeatureId::Face(best_face), out);
        out.transform_by(m);
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<Real>,
        dir: &Unit<Vector<Real>>,
        angle: Real,
        out: &mut ConvexPolygonalFeature,
    ) {
        out.clear();
        let local_dir = transform.inverse_transform_unit_vector(dir);
        let fid = self.support_feature_id_toward_eps(&local_dir, angle);

        match fid {
            FeatureId::Vertex(_) => {
                let v = self.vertex(fid);
                out.push(v, fid);
                out.set_feature_id(fid);
            }
            FeatureId::Edge(_) => {
                let edge = self.edge(fid);
                out.push(edge.0, edge.2);
                out.push(edge.1, edge.3);
                out.set_feature_id(fid);
                out.push_edge_feature_id(fid);
            }
            FeatureId::Face(_) => self.face(fid, out),
            FeatureId::Unknown => unreachable!(),
        }

        out.transform_by(transform);
    }
}
*/