parry3d/shape/convex_polyhedron.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
use crate::math::{Point, Real, Vector, DIM};
use crate::shape::{FeatureId, PackedFeatureId, PolygonalFeature, PolygonalFeatureMap, SupportMap};
// use crate::transformation;
use crate::utils::hashmap::{Entry, HashMap};
use crate::utils::{self, SortedPair};
use na::{self, ComplexField, Point2, Unit};
use std::f64;
#[cfg(not(feature = "std"))]
use na::ComplexField; // for .abs()
#[cfg(feature = "rkyv")]
use rkyv::{bytecheck, CheckBytes};
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Vertex {
pub first_adj_face_or_edge: u32,
pub num_adj_faces_or_edge: u32,
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Edge {
pub vertices: Point2<u32>,
pub faces: Point2<u32>,
pub dir: Unit<Vector<Real>>,
deleted: bool,
}
impl Edge {
fn other_triangle(&self, id: u32) -> u32 {
if id == self.faces[0] {
self.faces[1]
} else {
self.faces[0]
}
}
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize, CheckBytes),
archive(as = "Self")
)]
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Face {
pub first_vertex_or_edge: u32,
pub num_vertices_or_edges: u32,
pub normal: Unit<Vector<Real>>,
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
archive(check_bytes)
)]
#[derive(PartialEq, Debug, Copy, Clone)]
struct Triangle {
vertices: [u32; 3],
edges: [u32; 3],
normal: Vector<Real>,
parent_face: Option<u32>,
is_degenerate: bool,
}
impl Triangle {
fn next_edge_id(&self, id: u32) -> u32 {
for i in 0..3 {
if self.edges[i] == id {
return (i as u32 + 1) % 3;
}
}
unreachable!()
}
}
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "rkyv",
derive(rkyv::Archive, rkyv::Deserialize, rkyv::Serialize),
archive(check_bytes)
)]
#[derive(PartialEq, Debug, Clone)]
/// A convex polyhedron without degenerate faces.
pub struct ConvexPolyhedron {
points: Vec<Point<Real>>,
vertices: Vec<Vertex>,
faces: Vec<Face>,
edges: Vec<Edge>,
// Faces adjacent to a vertex.
faces_adj_to_vertex: Vec<u32>,
// Edges adjacent to a vertex.
edges_adj_to_vertex: Vec<u32>,
// Edges adjacent to a face.
edges_adj_to_face: Vec<u32>,
// Vertices adjacent to a face.
vertices_adj_to_face: Vec<u32>,
}
impl ConvexPolyhedron {
/// Creates a new convex polyhedron from an arbitrary set of points.
///
/// This explicitly computes the convex hull of the given set of points. Use
/// Returns `None` if the convex hull computation failed.
pub fn from_convex_hull(points: &[Point<Real>]) -> Option<ConvexPolyhedron> {
let (vertices, indices) = crate::transformation::convex_hull(points);
Self::from_convex_mesh(vertices, &indices)
}
/// Attempts to create a new solid assumed to be convex from the set of points and indices.
///
/// The given points and index information are assumed to describe a convex polyhedron.
/// It it is not, weird results may be produced.
///
/// # Return
///
/// Returns `None` if the given solid is not manifold (contains t-junctions, not closed, etc.)
pub fn from_convex_mesh(
points: Vec<Point<Real>>,
indices: &[[u32; DIM]],
) -> Option<ConvexPolyhedron> {
let eps = ComplexField::sqrt(crate::math::DEFAULT_EPSILON);
let mut vertices = Vec::new();
let mut edges = Vec::<Edge>::new();
let mut faces = Vec::<Face>::new();
let mut triangles = Vec::new();
let mut edge_map = HashMap::default();
let mut faces_adj_to_vertex = Vec::new();
let mut edges_adj_to_vertex = Vec::new();
let mut edges_adj_to_face = Vec::new();
let mut vertices_adj_to_face = Vec::new();
if points.len() + indices.len() <= 2 {
return None;
}
//// Euler characteristic.
let nedges = points.len() + indices.len() - 2;
edges.reserve(nedges);
/*
* Initialize triangles and edges adjacency information.
*/
for idx in indices {
let mut edges_id = [u32::MAX; DIM];
let face_id = triangles.len();
if idx[0] == idx[1] || idx[0] == idx[2] || idx[1] == idx[2] {
return None;
}
for i1 in 0..3 {
// Deal with edges.
let i2 = (i1 + 1) % 3;
let key = SortedPair::new(idx[i1], idx[i2]);
match edge_map.entry(key) {
Entry::Occupied(e) => {
let edge = &mut edges[*e.get() as usize];
let out_face_id = &mut edge.faces[1];
if *out_face_id == u32::MAX {
edges_id[i1] = *e.get();
*out_face_id = face_id as u32
} else {
// We have a t-junction.
return None;
}
}
Entry::Vacant(e) => {
edges_id[i1] = *e.insert(edges.len() as u32);
let dir = Unit::try_new(
points[idx[i2] as usize] - points[idx[i1] as usize],
crate::math::DEFAULT_EPSILON,
);
edges.push(Edge {
vertices: Point2::new(idx[i1], idx[i2]),
faces: Point2::new(face_id as u32, u32::MAX),
dir: dir.unwrap_or(Vector::x_axis()),
deleted: dir.is_none(),
});
}
}
}
let normal = utils::ccw_face_normal([
&points[idx[0] as usize],
&points[idx[1] as usize],
&points[idx[2] as usize],
]);
let triangle = Triangle {
vertices: *idx,
edges: edges_id,
normal: normal.map(|n| *n).unwrap_or(Vector::zeros()),
parent_face: None,
is_degenerate: normal.is_none(),
};
triangles.push(triangle);
}
// Find edges that must be deleted.
for e in &mut edges {
let tri1 = triangles.get(e.faces[0] as usize)?;
let tri2 = triangles.get(e.faces[1] as usize)?;
if tri1.normal.dot(&tri2.normal) > 1.0 - eps {
e.deleted = true;
}
}
/*
* Extract faces by following contours.
*/
for i in 0..triangles.len() {
if triangles[i].parent_face.is_none() {
for j1 in 0..3 {
if !edges[triangles[i].edges[j1] as usize].deleted {
// Create a new face, setup its first edge/vertex and construct it.
let new_face_id = faces.len();
let mut new_face = Face {
first_vertex_or_edge: edges_adj_to_face.len() as u32,
num_vertices_or_edges: 1,
normal: Unit::new_unchecked(triangles[i].normal),
};
edges_adj_to_face.push(triangles[i].edges[j1]);
vertices_adj_to_face.push(triangles[i].vertices[j1]);
let j2 = (j1 + 1) % 3;
let start_vertex = triangles[i].vertices[j1];
// NOTE: variables ending with _id are identifier on the
// fields of a triangle. Other variables are identifier on
// the triangles/edges/vertices arrays.
let mut curr_triangle = i;
let mut curr_edge_id = j2;
while triangles[curr_triangle].vertices[curr_edge_id] != start_vertex {
let curr_edge = triangles[curr_triangle].edges[curr_edge_id];
let curr_vertex = triangles[curr_triangle].vertices[curr_edge_id];
// NOTE: we should use this assertion. However, it can currently
// happen if there are some isolated non-deleted edges due to
// rounding errors.
//
// assert!(triangles[curr_triangle].parent_face.is_none());
triangles[curr_triangle].parent_face = Some(new_face_id as u32);
if !edges[curr_edge as usize].deleted {
edges_adj_to_face.push(curr_edge);
vertices_adj_to_face.push(curr_vertex);
new_face.num_vertices_or_edges += 1;
curr_edge_id = (curr_edge_id + 1) % 3;
} else {
// Find adjacent edge on the next triangle.
curr_triangle = edges[curr_edge as usize]
.other_triangle(curr_triangle as u32)
as usize;
curr_edge_id =
triangles[curr_triangle].next_edge_id(curr_edge) as usize;
assert!(
triangles[curr_triangle].vertices[curr_edge_id] == curr_vertex
);
}
}
if new_face.num_vertices_or_edges > 2 {
// Sometimes degenerate faces may be generated
// due to numerical errors resulting in an isolated
// edge not being deleted.
//
// This kind of degenerate faces are not valid.
faces.push(new_face);
}
break;
}
}
}
}
// Update face ids inside edges so that they point to the faces instead of the triangles.
for e in &mut edges {
if let Some(fid) = triangles.get(e.faces[0] as usize)?.parent_face {
e.faces[0] = fid;
}
if let Some(fid) = triangles.get(e.faces[1] as usize)?.parent_face {
e.faces[1] = fid;
}
}
/*
* Initialize vertices
*/
let empty_vertex = Vertex {
first_adj_face_or_edge: 0,
num_adj_faces_or_edge: 0,
};
vertices.resize(points.len(), empty_vertex);
// First, find their multiplicities.
for face in &faces {
let first_vid = face.first_vertex_or_edge;
let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;
for i in &vertices_adj_to_face[first_vid as usize..last_vid as usize] {
vertices[*i as usize].num_adj_faces_or_edge += 1;
}
}
// Now, find their starting id.
let mut total_num_adj_faces = 0;
for v in &mut vertices {
v.first_adj_face_or_edge = total_num_adj_faces;
total_num_adj_faces += v.num_adj_faces_or_edge;
}
faces_adj_to_vertex.resize(total_num_adj_faces as usize, 0);
edges_adj_to_vertex.resize(total_num_adj_faces as usize, 0);
// Reset the number of adjacent faces.
// It will be set again to the right value as
// the adjacent face list is filled.
for v in &mut vertices {
v.num_adj_faces_or_edge = 0;
}
for (face_id, face) in faces.iter().enumerate() {
let first_vid = face.first_vertex_or_edge;
let last_vid = face.first_vertex_or_edge + face.num_vertices_or_edges;
for vid in first_vid..last_vid {
let v = &mut vertices[vertices_adj_to_face[vid as usize] as usize];
faces_adj_to_vertex
[(v.first_adj_face_or_edge + v.num_adj_faces_or_edge) as usize] =
face_id as u32;
edges_adj_to_vertex
[(v.first_adj_face_or_edge + v.num_adj_faces_or_edge) as usize] =
edges_adj_to_face[vid as usize];
v.num_adj_faces_or_edge += 1;
}
}
// Note numerical errors may throw off the Euler characteristic.
// So we don't check it right now.
let res = ConvexPolyhedron {
points,
vertices,
faces,
edges,
faces_adj_to_vertex,
edges_adj_to_vertex,
edges_adj_to_face,
vertices_adj_to_face,
};
// TODO: for debug.
// res.check_geometry();
Some(res)
}
/// Verify if this convex polyhedron is actually convex.
#[inline]
pub fn check_geometry(&self) {
for face in &self.faces {
let p0 =
self.points[self.vertices_adj_to_face[face.first_vertex_or_edge as usize] as usize];
for v in &self.points {
assert!((v - p0).dot(face.normal.as_ref()) <= crate::math::DEFAULT_EPSILON);
}
}
}
/// The set of vertices of this convex polyhedron.
#[inline]
pub fn points(&self) -> &[Point<Real>] {
&self.points[..]
}
/// The topology of the vertices of this convex polyhedron.
#[inline]
pub fn vertices(&self) -> &[Vertex] {
&self.vertices[..]
}
/// The topology of the edges of this convex polyhedron.
#[inline]
pub fn edges(&self) -> &[Edge] {
&self.edges[..]
}
/// The topology of the faces of this convex polyhedron.
#[inline]
pub fn faces(&self) -> &[Face] {
&self.faces[..]
}
/// The array containing the indices of the vertices adjacent to each face.
#[inline]
pub fn vertices_adj_to_face(&self) -> &[u32] {
&self.vertices_adj_to_face[..]
}
/// The array containing the indices of the edges adjacent to each face.
#[inline]
pub fn edges_adj_to_face(&self) -> &[u32] {
&self.edges_adj_to_face[..]
}
/// The array containing the indices of the faces adjacent to each vertex.
#[inline]
pub fn faces_adj_to_vertex(&self) -> &[u32] {
&self.faces_adj_to_vertex[..]
}
/// Computes a scaled version of this convex polygon.
///
/// Returns `None` if the result had degenerate normals (for example if
/// the scaling factor along one axis is zero).
pub fn scaled(mut self, scale: &Vector<Real>) -> Option<Self> {
self.points
.iter_mut()
.for_each(|pt| pt.coords.component_mul_assign(scale));
for f in &mut self.faces {
f.normal = Unit::try_new(f.normal.component_mul(scale), 0.0).unwrap_or(f.normal);
}
for e in &mut self.edges {
e.dir = Unit::try_new(e.dir.component_mul(scale), 0.0).unwrap_or(e.dir);
}
Some(self)
}
fn support_feature_id_toward_eps(
&self,
local_dir: &Unit<Vector<Real>>,
eps: Real,
) -> FeatureId {
let (seps, ceps) = ComplexField::sin_cos(eps);
let support_pt_id = utils::point_cloud_support_point_id(local_dir.as_ref(), &self.points);
let vertex = &self.vertices[support_pt_id];
// Check faces.
for i in 0..vertex.num_adj_faces_or_edge {
let face_id = self.faces_adj_to_vertex[(vertex.first_adj_face_or_edge + i) as usize];
let face = &self.faces[face_id as usize];
if face.normal.dot(local_dir.as_ref()) >= ceps {
return FeatureId::Face(face_id);
}
}
// Check edges.
for i in 0..vertex.num_adj_faces_or_edge {
let edge_id = self.edges_adj_to_vertex[(vertex.first_adj_face_or_edge + i) as usize];
let edge = &self.edges[edge_id as usize];
if edge.dir.dot(local_dir.as_ref()).abs() <= seps {
return FeatureId::Edge(edge_id);
}
}
// The vertex is the support feature.
FeatureId::Vertex(support_pt_id as u32)
}
/// Computes the ID of the features with a normal that maximize the dot-product with `local_dir`.
pub fn support_feature_id_toward(&self, local_dir: &Unit<Vector<Real>>) -> FeatureId {
let eps: Real = na::convert::<f64, Real>(f64::consts::PI / 180.0);
self.support_feature_id_toward_eps(local_dir, eps)
}
/// The normal of the given feature.
pub fn feature_normal(&self, feature: FeatureId) -> Option<Unit<Vector<Real>>> {
match feature {
FeatureId::Face(id) => Some(self.faces[id as usize].normal),
FeatureId::Edge(id) => {
let edge = &self.edges[id as usize];
Some(Unit::new_normalize(
*self.faces[edge.faces[0] as usize].normal
+ *self.faces[edge.faces[1] as usize].normal,
))
}
FeatureId::Vertex(id) => {
let vertex = &self.vertices[id as usize];
let first = vertex.first_adj_face_or_edge;
let last = vertex.first_adj_face_or_edge + vertex.num_adj_faces_or_edge;
let mut normal = Vector::zeros();
for face in &self.faces_adj_to_vertex[first as usize..last as usize] {
normal += *self.faces[*face as usize].normal
}
Some(Unit::new_normalize(normal))
}
FeatureId::Unknown => None,
}
}
}
impl SupportMap for ConvexPolyhedron {
#[inline]
fn local_support_point(&self, dir: &Vector<Real>) -> Point<Real> {
utils::point_cloud_support_point(dir, self.points())
}
}
impl PolygonalFeatureMap for ConvexPolyhedron {
fn local_support_feature(&self, dir: &Unit<Vector<Real>>, out_feature: &mut PolygonalFeature) {
let mut best_fid = 0;
let mut best_dot = self.faces[0].normal.dot(dir);
for (fid, face) in self.faces[1..].iter().enumerate() {
let new_dot = face.normal.dot(dir);
if new_dot > best_dot {
best_fid = fid + 1;
best_dot = new_dot;
}
}
let face = &self.faces[best_fid];
let i1 = face.first_vertex_or_edge;
// TODO: if there are more than 4 vertices, we need to select four vertices that maximize the area.
let num_vertices = face.num_vertices_or_edges.min(4);
let i2 = i1 + num_vertices;
for (i, (vid, eid)) in self.vertices_adj_to_face[i1 as usize..i2 as usize]
.iter()
.zip(self.edges_adj_to_face[i1 as usize..i2 as usize].iter())
.enumerate()
{
out_feature.vertices[i] = self.points[*vid as usize];
out_feature.vids[i] = PackedFeatureId::vertex(*vid);
out_feature.eids[i] = PackedFeatureId::edge(*eid);
}
out_feature.fid = PackedFeatureId::face(best_fid as u32);
out_feature.num_vertices = num_vertices as usize;
}
fn is_convex_polyhedron(&self) -> bool {
true
}
}
/*
impl ConvexPolyhedron for ConvexPolyhedron {
fn vertex(&self, id: FeatureId) -> Point<Real> {
self.points[id.unwrap_vertex() as usize]
}
fn edge(&self, id: FeatureId) -> (Point<Real>, Point<Real>, FeatureId, FeatureId) {
let edge = &self.edges[id.unwrap_edge() as usize];
let v1 = edge.vertices[0];
let v2 = edge.vertices[1];
(
self.points[v1 as usize],
self.points[v2 as usize],
FeatureId::Vertex(v1),
FeatureId::Vertex(v2),
)
}
fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature) {
out.clear();
let face = &self.faces[id.unwrap_face() as usize];
let first_vertex = face.first_vertex_or_edge;
let last_vertex = face.first_vertex_or_edge + face.num_vertices_or_edges;
for i in first_vertex..last_vertex {
let vid = self.vertices_adj_to_face[i];
let eid = self.edges_adj_to_face[i];
out.push(self.points[vid], FeatureId::Vertex(vid));
out.push_edge_feature_id(FeatureId::Edge(eid));
}
out.set_normal(face.normal);
out.set_feature_id(id);
out.recompute_edge_normals();
}
fn support_face_toward(
&self,
m: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
out: &mut ConvexPolygonalFeature,
) {
let ls_dir = m.inverse_transform_vector(dir);
let mut best_face = 0;
let mut max_dot = self.faces[0].normal.dot(&ls_dir);
for i in 1..self.faces.len() {
let face = &self.faces[i];
let dot = face.normal.dot(&ls_dir);
if dot > max_dot {
max_dot = dot;
best_face = i;
}
}
self.face(FeatureId::Face(best_face), out);
out.transform_by(m);
}
fn support_feature_toward(
&self,
transform: &Isometry<Real>,
dir: &Unit<Vector<Real>>,
angle: Real,
out: &mut ConvexPolygonalFeature,
) {
out.clear();
let local_dir = transform.inverse_transform_unit_vector(dir);
let fid = self.support_feature_id_toward_eps(&local_dir, angle);
match fid {
FeatureId::Vertex(_) => {
let v = self.vertex(fid);
out.push(v, fid);
out.set_feature_id(fid);
}
FeatureId::Edge(_) => {
let edge = self.edge(fid);
out.push(edge.0, edge.2);
out.push(edge.1, edge.3);
out.set_feature_id(fid);
out.push_edge_feature_id(fid);
}
FeatureId::Face(_) => self.face(fid, out),
FeatureId::Unknown => unreachable!(),
}
out.transform_by(transform);
}
}
*/